A class for fitting histograms with functions. More...
#include <BCEfficiencyFitter.h>
Classes | |
class | ToyDataInterface |
Abstract class which doesn't do anything but offers the right interface to allow calculation the distribution of any statistic. More... | |
Public Types | |
Enumerator | |
enum | DataPointType { kDataPointRMS = 0, kDataPointSmallestInterval = 1, kDataPointCentralInterval = 2 } |
Public Types inherited from BCIntegrate | |
enum | BCOptimizationMethod { kOptEmpty, kOptSimAnn, kOptMetropolis, kOptMinuit, kOptDefault, NOptMethods } |
An enumerator for the mode finding algorithm. More... | |
enum | BCIntegrationMethod { kIntEmpty, kIntMonteCarlo, kIntCuba, kIntGrid, kIntLaplace, kIntDefault, NIntMethods } |
An enumerator for integration algorithms. More... | |
enum | BCMarginalizationMethod { kMargEmpty, kMargMetropolis, kMargMonteCarlo, kMargGrid, kMargDefault, NMargMethods } |
An enumerator for marginalization algorithms. More... | |
enum | BCSASchedule { kSACauchy, kSABoltzmann, kSACustom, NSAMethods } |
An enumerator for the Simulated Annealing schedule. More... | |
enum | BCCubaMethod { kCubaVegas, kCubaSuave, kCubaDivonne, kCubaCuhre, kCubaDefault, NCubaMethods } |
An enumerator for Cuba integration methods. More... | |
typedef void(BCIntegrate::* | tRandomizer) (std::vector< double > &) const |
A pointer for a function that chooses a next random point. | |
typedef double(BCIntegrate::* | tEvaluator) (std::vector< double > &, const std::vector< double > &, bool &) |
A pointer for a function that evaluates at a point. | |
typedef void(* | tIntegralUpdater) (const std::vector< double > &, const int &, double &, double &) |
A pointer for a function that updates the integral and absolute precision. | |
Public Types inherited from BCEngineMCMC | |
enum | Precision { kLow, kQuick, kMedium, kHigh, kVeryHigh } |
An enumerator for the status of a test. More... | |
enum | Phase { kPreRun = -1, kUnsetPhase = 0, kMainRun = +1 } |
An enumerator for the phase of the Markov chain. More... | |
enum | InitialPositionScheme { kInitCenter = 0, kInitRandomUniform = 1, kInitUserDefined = 2, kInitRandomPrior = 3 } |
An enumerator for markov-chain position initialization. More... | |
Public Member Functions | |
Constructors and destructor | |
BCEfficiencyFitter (const TH1 &trials, const TH1 &successes, const TF1 &func, const std::string &name="efficiency_fitter_model") | |
Constructor. More... | |
virtual | ~BCEfficiencyFitter () |
The default destructor. More... | |
Member functions (get) | |
TH1 & | GetTrials () |
TH1 & | GetSuccesses () |
bool | GetUncertainties (int n, int k, double p, double &xexp, double &xmin, double &xmax) |
Calculates the central value and the lower and upper limits for a given probability. More... | |
Member functions (set) | |
void | SetDataPointType (DataPointType type) |
Set type of point to be used to plot the efficiency data. | |
Member functions (miscellaneous methods) | |
virtual double | LogLikelihood (const std::vector< double > ¶meters) |
The log of the prior probability. More... | |
virtual void | Fit () |
Performs the fit. More... | |
virtual void | DrawData (bool flaglegend=false) |
Draw the data in the current pad. More... | |
virtual void | DrawFit (const std::string &options="", bool flaglegend=false) |
Draw the fit in the current pad. More... | |
double | CalculatePValueFast (const std::vector< double > &par, BCEfficiencyFitter::ToyDataInterface *callback, unsigned nIterations=100000) |
Calculate the p-value using fast-MCMC. More... | |
double | CalculatePValueFast (const std::vector< double > &par, unsigned nIterations=100000) |
Calculate the p-value using fast-MCMC. More... | |
Public Member Functions inherited from BCFitter | |
virtual void | MCMCUserInitialize () |
Create enough TF1 copies for thread safety. | |
BCFitter (const TF1 &f, const std::string &name="fitter_model") | |
Constructor. More... | |
virtual | ~BCFitter ()=0 |
The default destructor. More... | |
TF1 & | GetFitFunction () |
Get fit function. More... | |
TH2 * | GetGraphicalErrorBandXY (double level=.68, int nsmooth=0, bool overcoverage=true) const |
const TH2 & | GetErrorBandXY () const |
std::vector< double > | GetErrorBand (double level) const |
Returns a vector of y-values at a certain probability level. More... | |
TGraph * | GetErrorBandGraph (double level1, double level2) const |
TGraph * | GetFitFunctionGraph (const std::vector< double > ¶meters) |
TGraph * | GetFitFunctionGraph () |
TGraph * | GetFitFunctionGraph (const std::vector< double > ¶meters, double xmin, double xmax, int n=1000) |
void | FixDataAxis (unsigned int index, bool fixed) |
Toggle the data axis defined by index to be fixed. More... | |
bool | GetFixedDataAxis (unsigned int index) const |
double | GetPValue () const |
void | SetErrorBandContinuous (bool flag) |
Sets the error band flag to continuous function. | |
void | SetErrorBandExtensionLowEdgeX (double extension) |
Extends the lower x Edge of th errorband by -extension. | |
void | SetErrorBandExtensionUpEdgeX (double extension) |
Extends the lower x Edge of th errorband by +extension. | |
void | SetErrorBandExtensionLowEdgeY (double extension) |
Extends the lower y Edge of th errorband by -extension. | |
void | SetErrorBandExtensionUpEdgeY (double extension) |
Extends the lower y Edge of th errorband by +extension. | |
void | SetFillErrorBand (bool flag=true) |
Turn on or off the filling of the error band during the MCMC run. More... | |
void | UnsetFillErrorBand () |
Turn off filling of the error band during the MCMC run. More... | |
void | SetFitFunctionIndexX (int index) |
Sets index of the x values in function fits. More... | |
void | SetFitFunctionIndexY (int index) |
Sets index of the y values in function fits. More... | |
void | SetFitFunctionIndices (int indexx, int indexy) |
Sets indices of the x and y values in function fits. More... | |
void | SetFlagIntegration (bool flag) |
Sets the flag for integration. More... | |
virtual double | FitFunction (const std::vector< double > &x, const std::vector< double > ¶meters) |
Defines a fit function. More... | |
double | Integral (const std::vector< double > ¶meters, double xmin, double xmax) |
Compute the integral of the fit function between xmin and xmax. More... | |
virtual void | MCMCUserIterationInterface () |
Overloaded from BCEngineMCMC. | |
virtual void | MarginalizePreprocess () |
Overloaded from BCIntegrate. More... | |
void | FillErrorBand () |
Fill error band histogram for current iteration. More... | |
void | PrintShortFitSummary () |
Prints a short summary of the fit results on the screen. More... | |
Public Member Functions inherited from BCModel | |
BCModel (const std::string &name="model") | |
Default constructor. More... | |
BCModel (const BCModel &bcmodel) | |
Copy constructor. More... | |
BCModel (const std::string &filename, const std::string &name, bool loadObservables=true) | |
Read in MCMC constructor. More... | |
BCModel & | operator= (const BCModel &) |
Copy-assignment operator. | |
virtual | ~BCModel () |
Destructor. More... | |
BCDataSet * | GetDataSet () |
unsigned | GetNDataPoints () const |
int | GetNDoF () const |
virtual BCPriorModel * | GetPriorModel (bool prepare=true, bool call_likelihood=false) |
virtual BCH1D | GetPrior (unsigned index) |
Get prior of a variable as a BCH1D. More... | |
virtual BCH2D | GetPrior (unsigned index1, unsigned index2) |
Get prior of a pair of variables as a BCH2D. More... | |
BCH1D & | GetBCH1DPriorDrawingOptions () |
BCH2D & | GetBCH2DPriorDrawingOptions () |
BCH1D & | GetBCH1DPosteriorDrawingOptions () |
BCH2D & | GetBCH2DPosteriorDrawingOptions () |
bool | GetDrawPriorFirst () const |
void | SetDataSet (BCDataSet *dataset) |
Sets the data set. More... | |
void | SetKnowledgeUpdateDrawingStyle (BCAux::BCKnowledgeUpdateDrawingStyle style=BCAux::kKnowledgeUpdateDefaultStyle) |
Set default drawing options for knowledge update plots. More... | |
void | SetDrawPriorFirst (bool b=true) |
Set drawing of prior first (true) or posterior first (false) for knowledge update plots. More... | |
virtual double | APrioriProbability (const std::vector< double > ¶meters) |
Returns the prior probability. More... | |
virtual double | LogAPrioriProbability (const std::vector< double > ¶meters) |
Returns natural logarithm of the prior probability. More... | |
virtual double | Likelihood (const std::vector< double > ¶ms) |
Returns the likelihood. More... | |
virtual double | ProbabilityNN (const std::vector< double > ¶ms) |
Returns the likelihood times prior probability given a set of parameter values. More... | |
virtual double | LogProbabilityNN (const std::vector< double > ¶meters) |
Returns the natural logarithm of likelihood times prior probability given a set of parameter values. More... | |
virtual double | Probability (const std::vector< double > ¶meters) |
Returns the a posteriori probability given a set of parameter values. More... | |
virtual double | LogProbability (const std::vector< double > ¶meters) |
Returns natural logarithm of the a posteriori probability given a set of parameter values. More... | |
virtual double | SamplingFunction (const std::vector< double > ¶meters) |
Sampling function used for importance sampling. More... | |
virtual double | Eval (const std::vector< double > ¶meters) |
Overloaded function to evaluate integral. More... | |
virtual double | LogEval (const std::vector< double > ¶meters) |
Overloaded function to evaluate integral. More... | |
virtual void | InitializeMarkovChainTree (bool replacetree=false, bool replacefile=false) |
Initialize the trees containing the Markov chains and parameter info. More... | |
double | HessianMatrixElement (unsigned index1, unsigned index2, const std::vector< double > &point) |
Calculates the matrix element of the Hessian matrix. More... | |
void | PrintShortFitSummary () |
Prints a short summary of the fit results on the screen. More... | |
void | PrintHessianMatrix (std::vector< double > parameters) |
Prints matrix elements of the Hessian matrix. More... | |
virtual unsigned | PrintKnowledgeUpdatePlots (const std::string &filename, unsigned hdiv=1, unsigned vdiv=1, bool call_likelihood=false) |
Print a comparison of the prior knowledge to the posterior knowledge for each parameter. More... | |
Public Member Functions inherited from BCIntegrate | |
BCIntegrate (const std::string &name="model") | |
Default constructor. | |
BCIntegrate (const std::string &filename, const std::string &name, bool loadObservables=true) | |
Read in MCMC constructor. More... | |
BCIntegrate (const BCIntegrate &other) | |
Copy constructor. | |
BCIntegrate & | operator= (const BCIntegrate &) |
Copy-assignment operator. | |
virtual | ~BCIntegrate () |
Destructor. | |
double | GetIntegral () const |
BCIntegrate::BCOptimizationMethod | GetOptimizationMethod () const |
BCIntegrate::BCIntegrationMethod | GetIntegrationMethod () const |
BCIntegrate::BCMarginalizationMethod | GetMarginalizationMethod () const |
BCIntegrate::BCSASchedule | GetSASchedule () const |
void | GetRandomVectorInParameterSpace (std::vector< double > &x) const |
Fills a vector of random numbers x[i] between fMin[i] and fMax[i] into a vector. More... | |
double | GetRandomPoint (std::vector< double > &x) |
Fills a vector of (flat) random numbers in the limits of the parameters and returns the probability at that point. More... | |
int | GetNIterationsMin () const |
int | GetNIterationsMax () const |
int | GetNIterationsPrecisionCheck () const |
int | GetNIterations () const |
double | GetRelativePrecision () const |
double | GetAbsolutePrecision () const |
BCCubaMethod | GetCubaIntegrationMethod () const |
const BCCubaOptions::Vegas & | GetCubaVegasOptions () const |
const BCCubaOptions::Suave & | GetCubaSuaveOptions () const |
const BCCubaOptions::Divonne & | GetCubaDivonneOptions () const |
const BCCubaOptions::Cuhre & | GetCubaCuhreOptions () const |
TH1 * | GetSlice (std::vector< unsigned > indices, unsigned &nIterations, double &log_max_val, const std::vector< double > parameters=std::vector< double >(0), int nbins=0, bool normalize=true) |
Returns a one-dimensional slice of the pdf at the point and along a specific direction. More... | |
TH1 * | GetSlice (const std::string &name, unsigned &nIterations, double &log_max_val, const std::vector< double > parameters=std::vector< double >(0), int nbins=0, bool normalize=true) |
Returns a one-dimensional slice of the pdf at the point and along a specific direction. More... | |
TH1 * | GetSlice (unsigned index, unsigned &nIterations, double &log_max_val, const std::vector< double > parameters=std::vector< double >(0), int nbins=0, bool normalize=true) |
Returns a one-dimensional slice of the pdf at the point and along a specific direction. More... | |
TH2 * | GetSlice (const std::string &name1, const std::string &name2, unsigned &nIterations, double &log_max_val, const std::vector< double > parameters=std::vector< double >(0), int nbins=0, bool normalize=true) |
Returns a two-dimensional slice of the pdf at the point and along two specified directions. More... | |
TH2 * | GetSlice (unsigned index1, unsigned index2, unsigned &nIterations, double &log_max_val, const std::vector< double > parameters=std::vector< double >(0), int nbins=0, bool normalize=true) |
Returns a two-dimensional slice of the pdf at the point and along two specified directions. More... | |
double | GetError () const |
TMinuitMinimizer & | GetMinuit () |
double | GetSAT0 () const |
Returns the Simulated Annealing starting temperature. More... | |
double | GetSATmin () const |
Returns the Simulated Annealing threshhold temperature. More... | |
virtual const std::vector< double > & | GetBestFitParameters () const |
const std::vector< double > & | GetBestFitParameterErrors () const |
Returns the set of errors on the values of the parameters at the mode. | |
double | GetLogMaximum () const |
Returns the posterior at the mode. More... | |
void | SetFlagIgnorePrevOptimization (bool flag) |
void | SetOptimizationMethod (BCIntegrate::BCOptimizationMethod method) |
void | SetIntegrationMethod (BCIntegrate::BCIntegrationMethod method) |
void | SetMarginalizationMethod (BCIntegrate::BCMarginalizationMethod method) |
void | SetSASchedule (BCIntegrate::BCSASchedule schedule) |
void | SetNIterationsMin (int niterations) |
void | SetNIterationsMax (int niterations) |
void | SetNIterationsPrecisionCheck (int niterations) |
void | SetRelativePrecision (double relprecision) |
void | SetAbsolutePrecision (double absprecision) |
Set absolute precision of the numerical integation. | |
void | SetCubaIntegrationMethod (BCCubaMethod type) |
Set Cuba integration method. | |
void | SetCubaOptions (const BCCubaOptions::Vegas &options) |
Set options for CUBA's Vegas. More... | |
void | SetCubaOptions (const BCCubaOptions::Suave &options) |
Set options for CUBA's Suave. More... | |
void | SetCubaOptions (const BCCubaOptions::Divonne &options) |
Set options for CUBA's Divonne. More... | |
void | SetCubaOptions (const BCCubaOptions::Cuhre &options) |
Set options for CUBA's Cuhre. More... | |
void | SetSAT0 (double T0) |
Set starting temperature for Simulated Annealing. More... | |
void | SetSATmin (double Tmin) |
Set threshold temperature for Simulated Annealing. More... | |
double | Normalize () |
Performs integration. More... | |
double | Integrate (BCIntegrationMethod intmethod) |
Does the integration over the un-normalized probability. More... | |
double | Integrate () |
Perform the integration. More... | |
double | Integrate (BCIntegrationMethod type, tRandomizer randomizer, tEvaluator evaluator, tIntegralUpdater updater, std::vector< double > &sums) |
Does the integration over the un-normalized probability. More... | |
double | EvaluatorMC (std::vector< double > &sums, const std::vector< double > &point, bool &accepted) |
Evaluates integrator. | |
int | MarginalizeAll () |
Marginalize all probabilities wrt. More... | |
int | MarginalizeAll (BCMarginalizationMethod margmethod) |
Marginalize all probabilities wrt. More... | |
virtual void | MarginalizePostprocess () |
Method executed after marginalization. More... | |
std::vector< double > | FindMode (std::vector< double > start=std::vector< double >()) |
Do the mode finding using a method set via SetOptimizationMethod. More... | |
std::vector< double > | FindMode (BCIntegrate::BCOptimizationMethod optmethod, std::vector< double > start=std::vector< double >()) |
Find mode using a specific method. More... | |
double | SATemperature (double t) const |
Temperature annealing schedule for use with Simulated Annealing. More... | |
double | SATemperatureBoltzmann (double t) const |
Temperature annealing schedule for use with Simulated Annealing. More... | |
double | SATemperatureCauchy (double t) const |
Temperature annealing schedule for use with Simulated Annealing. More... | |
virtual double | SATemperatureCustom (double t) const |
Temperature annealing schedule for use with Simulated Annealing. More... | |
std::vector< double > | GetProposalPointSA (const std::vector< double > &x, int t) const |
Generates a new state in a neighbourhood around x that is to be accepted or rejected by the Simulated Annealing algorithm. More... | |
std::vector< double > | GetProposalPointSABoltzmann (const std::vector< double > &x, int t) const |
Generates a new state in a neighbourhood around x that is to be accepted or rejected by the Simulated Annealing algorithm. More... | |
std::vector< double > | GetProposalPointSACauchy (const std::vector< double > &x, int t) const |
Generates a new state in a neighbourhood around x that is to be accepted or rejected by the Simulated Annealing algorithm. More... | |
virtual std::vector< double > | GetProposalPointSACustom (const std::vector< double > &x, int t) const |
Generates a new state in a neighbourhood around x that is to be accepted or rejected by the Simulated Annealing algorithm. More... | |
std::vector< double > | SAHelperGetRandomPointOnHypersphere () const |
Generates a uniform distributed random point on the surface of a fNvar-dimensional Hypersphere. More... | |
double | SAHelperGetRadialCauchy () const |
Generates the radial part of a n-dimensional Cauchy distribution. More... | |
double | SAHelperSinusToNIntegral (int dim, double theta) const |
Returns the Integral of sin^dim from 0 to theta. More... | |
virtual void | ResetResults () |
Reset all information on the best-fit parameters. More... | |
std::string | DumpIntegrationMethod (BCIntegrationMethod type) const |
Return string with the name for a given integration type. More... | |
std::string | DumpCurrentIntegrationMethod () const |
Return string with the name for the currently set integration type. More... | |
std::string | DumpUsedIntegrationMethod () const |
Return string with the name for the previously used integration type. More... | |
std::string | DumpMarginalizationMethod (BCMarginalizationMethod type) const |
Return string with the name for a given marginalization type. More... | |
std::string | DumpCurrentMarginalizationMethod () const |
Return string with the name for the currently set marginalization type. More... | |
std::string | DumpUsedMarginalizationMethod () const |
Return string with the name for the marginalization type used. More... | |
std::string | DumpOptimizationMethod (BCOptimizationMethod type) const |
Return string with the name for a given optimization type. More... | |
std::string | DumpCurrentOptimizationMethod () const |
Return string with the name for the currently set optimization type. More... | |
std::string | DumpUsedOptimizationMethod () const |
Return string with the name for the optimization type used to find the current mode. More... | |
std::string | DumpCubaIntegrationMethod (BCCubaMethod type) const |
Return string with the name for a given Cuba integration type. More... | |
std::string | DumpCubaIntegrationMethod () const |
Return string with the name for the currently set Cuba integration type. More... | |
void | SetBestFitParameters (const std::vector< double > &x) |
Set best fit parameters values. More... | |
void | SetBestFitParameters (const std::vector< double > &x, const double &new_value, double &old_value) |
bool | CheckMarginalizationAvailability (BCMarginalizationMethod type) |
Check availability of integration routine for marginalization. More... | |
bool | CheckMarginalizationIndices (TH1 *hist, const std::vector< unsigned > &index) |
Check that indices of parameters to marginalize w/r/t are correct. | |
double | IntegrateLaplace () |
Integrate using the Laplace approximation. More... | |
Public Member Functions inherited from BCEngineMCMC | |
BCEngineMCMC (const std::string &name="model") | |
Default constructor. More... | |
BCEngineMCMC (const BCEngineMCMC &enginemcmc) | |
Copy constructor. More... | |
BCEngineMCMC (const std::string &filename, const std::string &name, bool loadObservables=true) | |
Read in MCMC constructor. More... | |
BCEngineMCMC & | operator= (const BCEngineMCMC &) |
Copy-assignment operator. | |
virtual | ~BCEngineMCMC () |
Destructor. More... | |
const std::string & | GetName () const |
const std::string & | GetSafeName () const |
unsigned | GetNChains () const |
unsigned | GetNLag () const |
int | GetCurrentIteration () const |
unsigned | GetCurrentChain () const |
int | GetNIterationsConvergenceGlobal () const |
unsigned | GetNIterationsPreRun () const |
unsigned | GetNIterationsPreRunMin () const |
unsigned | GetNIterationsPreRunMax () const |
unsigned | GetNIterationsRun () const |
unsigned | GetNIterationsPreRunCheck () const |
unsigned | GetPreRunCheckClear () |
double | GetMinimumEfficiency () const |
double | GetMaximumEfficiency () const |
double | GetScaleFactorLowerLimit () const |
double | GetScaleFactorUpperLimit () const |
const std::vector< std::vector< double > > & | GetScaleFactors () const |
const ChainState & | GetChainState (unsigned c) const |
const std::vector< double > & | Getx (unsigned c) const |
double | Getx (unsigned c, unsigned p) const |
double | GetLogProbx (unsigned c) const |
BCEngineMCMC::Phase | GetPhase () const |
BCEngineMCMC::InitialPositionScheme | GetInitialPositionScheme () const |
unsigned | GetInitialPositionAttemptLimit () const |
bool | GetProposeMultivariate () const |
double | GetProposalFunctionDof () const |
unsigned | GetMultivariateCovarianceUpdates () const |
double | GetMultivariateCovarianceUpdateLambda () const |
double | GetMultivariateEpsilon () const |
double | GetMultivariateScaleMultiplier () const |
double | GetRValueParametersCriterion () const |
const std::vector< double > & | GetRValueParameters () const |
double | GetRValueParameters (unsigned index) const |
bool | GetCorrectRValueForSamplingVariability () const |
Flag for correcting convergence checking for initial sampling variability. More... | |
bool | GetFlagRun () const |
TTree * | GetMarkovChainTree () const |
Retrieve the tree containing the Markov chain. More... | |
TTree * | GetParameterTree () const |
Retrieve the tree containing the parameter information. More... | |
TFile * | GetOutputFile () const |
Retrieve output file for MCMC. More... | |
const BCEngineMCMC::Statistics & | GetStatistics () const |
Get combined statistics for all chains. More... | |
const BCEngineMCMC::Statistics & | GetStatistics (unsigned c) const |
Get MCMC statistics for one chain. More... | |
const std::vector< BCEngineMCMC::Statistics > & | GetStatisticsVector () const |
Get vector of MCMC statistics for each chain separately. More... | |
bool | GetRescaleHistogramRangesAfterPreRun () const |
double | GetHistogramRescalePadding () const |
virtual std::vector< unsigned > | GetH1DPrintOrder () const |
virtual std::vector< std::pair< unsigned, unsigned > > | GetH2DPrintOrder () const |
bool | MarginalizedHistogramExists (unsigned index) const |
bool | MarginalizedHistogramExists (unsigned index1, unsigned index2) const |
TH1 * | GetMarginalizedHistogram (const std::string &name) const |
Obtain the individual marginalized distributions with respect to one parameter as a ROOT TH1. More... | |
TH1 * | GetMarginalizedHistogram (unsigned index) const |
Obtain the individual marginalized distributions with respect to one parameter as a ROOT TH1. More... | |
TH2 * | GetMarginalizedHistogram (const std::string &name1, const std::string &name2) const |
Obtain the individual marginalized distributions with respect to two parameters as a ROOT TH2. More... | |
TH2 * | GetMarginalizedHistogram (unsigned index1, unsigned index2) const |
Obtain the individual marginalized distributions with respect to two parameters as a ROOT TH2. More... | |
BCH1D | GetMarginalized (const std::string &name) const |
Obtain the individual marginalized distributions with respect to one parameter. More... | |
BCH1D | GetMarginalized (unsigned index) const |
Obtain the individual marginalized distributions with respect to one parameter. More... | |
BCH2D | GetMarginalized (const std::string &name1, const std::string &name2) const |
Obtain the individual marginalized distributions with respect to two parameters. More... | |
BCH2D | GetMarginalized (unsigned index1, unsigned index2) const |
Obtain the individual marginalized distributions with respect to two parameters. More... | |
unsigned | GetMaximumParameterNameLength (bool observables=true) const |
BCVariable & | GetVariable (unsigned index) |
const BCVariable & | GetVariable (unsigned index) const |
unsigned | GetNVariables () const |
BCParameterSet & | GetParameters () |
const BCParameterSet & | GetParameters () const |
BCParameter & | GetParameter (unsigned index) |
const BCParameter & | GetParameter (unsigned index) const |
BCParameter & | GetParameter (const std::string &name) |
const BCParameter & | GetParameter (const std::string &name) const |
unsigned | GetNParameters () const |
unsigned | GetNFixedParameters () const |
unsigned | GetNFreeParameters () const |
BCObservableSet & | GetObservables () |
const BCObservableSet & | GetObservables () const |
BCObservable & | GetObservable (unsigned index) |
const BCObservable & | GetObservable (unsigned index) const |
BCObservable & | GetObservable (const std::string &name) |
const BCObservable & | GetObservable (const std::string &name) const |
unsigned | GetNObservables () const |
const std::vector< double > & | GetLocalModes (bool force_recalculation=false) |
bool | GetReuseObservables () const |
BCH1D & | GetBCH1DdrawingOptions () |
BCH2D & | GetBCH2DdrawingOptions () |
void | SetName (const std::string &name) |
Sets the name of the engine. More... | |
void | SetScaleFactorLowerLimit (double l) |
Set scale factor lower limit. | |
void | SetScaleFactorUpperLimit (double l) |
Set scale factor upper limit. | |
void | SetInitialScaleFactors (const std::vector< double > &scale) |
Set the initial scale factors for the factorized proposal function. More... | |
void | SetNChains (unsigned n) |
Sets the number of Markov chains which are run in parallel. More... | |
void | SetNLag (unsigned n) |
Sets the lag of the Markov chains. | |
void | SetNIterationsPreRunMax (unsigned n) |
Sets the maximum number of iterations in the pre-run. More... | |
void | SetNIterationsRun (unsigned n) |
Sets the number of iterations. More... | |
void | SetNIterationsPreRunMin (unsigned n) |
Sets the minimum number of iterations in the pre-run. | |
void | SetNIterationsPreRunCheck (unsigned n) |
Sets the number of iterations between scale adjustments and convergence checks in the pre-run. More... | |
void | SetPreRunCheckClear (unsigned n) |
Sets the number of prerun checks to make inbetween statistics clearing. More... | |
void | SetMinimumEfficiency (double efficiency) |
Sets the minimum efficiency required for a chain. More... | |
void | SetMaximumEfficiency (double efficiency) |
Sets the maximum efficiency required for a chain. More... | |
void | SetRandomSeed (unsigned seed) |
Set the random number seed. | |
void | SetInitialPositions (const std::vector< double > &x0s) |
Sets the initial positions for all chains. More... | |
void | SetInitialPositions (const std::vector< std::vector< double > > &x0s) |
Sets the initial positions for all chains. More... | |
void | SetInitialPositionScheme (BCEngineMCMC::InitialPositionScheme scheme) |
Sets flag which defines initial position. More... | |
void | SetInitialPositionAttemptLimit (unsigned n) |
Sets maximum number of attempts to find a valid initial position. More... | |
void | SetProposeMultivariate (bool flag) |
Set flag to true to turn on the multivariate proposal for MCMC based on (Haario et al., 2001) where the covariance is learned from the prerun. More... | |
void | SetProposalFunctionDof (double dof=1) |
Set the degree of freedom of the proposal function for MCMC. More... | |
void | SetMultivariateCovarianceUpdateLambda (double l) |
Set weighting for multivariate proposal function covariance update. More... | |
void | SetMultivariateEpsilon (double epsilon) |
Sets multivariate-proposal-function cholesky-decomposition nudge. More... | |
void | SetMultivariateScaleMultiplier (double s) |
Sets multivariate-proposal-function scale multiplier. More... | |
void | SetFlagFillHistograms (bool flag) |
Sets whether to fill histograms. More... | |
void | SetFlagFillHistograms (bool flag_1d, bool flag_2d) |
Sets the whether to fill histograms. More... | |
void | SetFillHistogramParPar (unsigned x, unsigned y, bool flag=true) |
Sets whether to fill particular H2 histogram: par(y) vs. More... | |
void | SetFillHistogramParPar (const std::string &x, const std::string &y, bool flag=true) |
Sets whether to fill particular H2 histogram: par(y) vs. More... | |
void | SetFillHistogramParObs (unsigned x, unsigned y, bool flag=true) |
Sets whether to fill particular H2 histogram: obs(y) vs. More... | |
void | SetFillHistogramParObs (const std::string &x, const std::string &y, bool flag=true) |
Sets whether to fill particular H2 histogram: obs(y) vs. More... | |
void | SetFillHistogramObsObs (unsigned x, unsigned y, bool flag=true) |
Sets whether to fill particular H2 histogram: obs(y) vs. More... | |
void | SetFillHistogramObsObs (const std::string &x, const std::string &y, bool flag=true) |
Sets whether to fill particular H2 histogram: obs(y) vs. More... | |
void | SetFillHistogramObsPar (unsigned x, unsigned y, bool flag=true) |
Sets whether to fill particular H2 histogram: par(y) vs. More... | |
void | SetFillHistogramObsPar (const std::string &x, const std::string &y, bool flag=true) |
Sets whether to fill particular H2 histogram: par(y) vs. More... | |
void | SetFlagPreRun (bool flag) |
Set if a (new) prerun should be performed. More... | |
void | SetRValueParametersCriterion (double r) |
Sets the parameter R-value criterion for convergence of all chains. | |
void | SetCorrectRValueForSamplingVariability (bool flag=true) |
Set flag to correct convergence checking for initial sampling variability. More... | |
void | SetPrecision (BCEngineMCMC::Precision precision) |
Set the precision for the MCMC run. More... | |
void | SetPrecision (const BCEngineMCMC *other) |
Copy precision for the MCMC run from other model. More... | |
void | SetPrecision (const BCEngineMCMC &other) |
Copy precision for the MCMC run from other model. More... | |
void | SetNbins (unsigned int nbins) |
Set the number of bins for the marginalized distribution of all parameters. More... | |
void | SetReuseObservables (bool flag) |
void | SetRescaleHistogramRangesAfterPreRun (bool flag=true) |
Set flag for rescaling histogram ranges after pre-run. More... | |
void | SetHistogramRescalingPadding (double factor) |
Set enlargement factor of range for when rescaling. More... | |
void | WriteMarkovChain (bool flag) |
Turn on/off writing of Markov chain to root file. More... | |
void | WriteMarkovChainRun (bool flag) |
Turn on/off writing of Markov chain to root file during run. More... | |
void | WriteMarkovChainPreRun (bool flag) |
Turn on/off writing of Markov chain to root file during prerun. More... | |
void | WriteMarkovChain (const std::string &filename, const std::string &option, bool flag_run=true, bool flag_prerun=true) |
Turn on writing of Markov chain to root file. More... | |
void | SetPriorConstant (unsigned index) |
void | SetPriorConstant (const std::string &name) |
void | SetPrior (unsigned index, TF1 &f, bool logL=true) |
void | SetPrior (const std::string &name, TF1 &f, bool logL=true) |
void | SetPriorDelta (unsigned index, double value) |
void | SetPriorDelta (const std::string &name, double value) |
void | SetPriorGauss (unsigned index, double mean, double sigma) |
void | SetPriorGauss (const std::string &name, double mean, double sigma) |
void | SetPriorGauss (unsigned index, double mode, double sigma_below, double sigma_above) |
void | SetPriorGauss (const std::string &name, double mode, double sigma_below, double sigma_above) |
void | SetPrior (unsigned index, TH1 &h, bool interpolate=false) |
void | SetPrior (const std::string &name, TH1 &h, bool interpolate=false) |
void | SetPriorConstantAll () |
void | WriteMarginalizedDistributions (const std::string &filename, const std::string &option, bool closeExistingFile=false) |
Write marginalization histograms to file. More... | |
virtual void | PrintSummary () const |
Prints a summary to the logs. More... | |
void | PrintParameters (const std::vector< double > &P, void(*output)(const std::string &)=BCLog::OutSummary) const |
Print parameters. More... | |
unsigned | PrintAllMarginalized (const std::string &filename, unsigned hdiv=1, unsigned vdiv=1) const |
Print all marginalizations. More... | |
unsigned | PrintParameterPlot (const std::string &filename, int npar=10, double interval_content=68e-2, std::vector< double > quantile_values=std::vector< double >(0), bool rescale_ranges=true) const |
Print a summary plot for the parameters and user-defined observables. More... | |
bool | DrawParameterPlot (unsigned i0, unsigned npar=0, double interval_content=68e-2, std::vector< double > quantile_values=std::vector< double >(0), bool rescale_ranges=true) const |
Draw a summary plot for the parameters in the range provided to current pad. More... | |
bool | PrintCorrelationMatrix (const std::string &filename="matrix.pdf") const |
Print a correlation matrix for the parameters. More... | |
bool | PrintCorrelationPlot (const std::string &filename="correlation.pdf", bool include_observables=true) const |
Print a correlation plot for the parameters. More... | |
bool | PrintParameterLatex (const std::string &filename) const |
Print a LaTeX table of the parameters. More... | |
virtual void | CreateHistograms (bool rescale_ranges=false) |
Create histograms from parameter and observable sets. More... | |
virtual bool | AddParameter (const std::string &name, double min, double max, const std::string &latexname="", const std::string &unitstring="") |
virtual bool | AddParameter (BCParameter ¶meter) |
virtual bool | AddObservable (const std::string &name, double min, double max, const std::string &latexname="", const std::string &unitstring="") |
virtual bool | AddObservable (BCObservable &obs) |
virtual void | EvaluateObservables () |
Evaluates user-defined observables at current state of all chains and stores results in fMCMCState. | |
virtual void | EvaluateObservables (unsigned chain) |
Evaluates user-defined observables at current state of chain and stores results in fMCMCState. More... | |
virtual void | CalculateObservables (const std::vector< double > &pars) |
Evaluates user-defined observables. More... | |
virtual double | ProposalFunction (unsigned ichain, unsigned ipar) |
The default proposal function is a Breit-Wigner random walk. More... | |
bool | GetProposalPointMetropolis (unsigned chain, std::vector< double > &x) |
Return a proposal point for the Metropolis algorithm. More... | |
bool | GetProposalPointMetropolis (unsigned chain, unsigned parameter, std::vector< double > &x) |
Return a proposal point for the Metropolis algorithm. More... | |
bool | GetNewPointMetropolis () |
Generate a new point using the Metropolis algorithm for all chains. More... | |
bool | GetNewPointMetropolis (unsigned chain) |
Generate a new point using the Metropolis algorithm for one chain. More... | |
bool | GetNewPointMetropolis (unsigned chain, unsigned parameter) |
Generate a new point using the Metropolis algorithm for one chain, varying only one parameter's value. More... | |
bool | AcceptOrRejectPoint (unsigned chain, unsigned parameter) |
Accept or rejects a point for a chain and updates efficiency. More... | |
void | InChainFillHistograms (const ChainState &cs) |
Fill marginalized distributions from a chain state. | |
void | InChainFillHistograms () |
Fill marginalized distributions from all chain states. | |
void | InChainFillTree (const ChainState &cs, unsigned chain_number) |
Write a chain state to the tree. | |
void | InChainFillTree () |
Write all chain states to the tree. | |
bool | Metropolis () |
Runs Metropolis algorithm. More... | |
bool | MetropolisPreRun () |
Runs a pre run for the Metropolis algorithm. More... | |
void | MCMCInitialize () |
Resets all containers used in MCMC and initializes starting points. More... | |
virtual void | MCMCCurrentPointInterface (const std::vector< double > &point, int ichain, bool accepted) |
Interface allowing to execute arbitrary code for each new point of the MCMC whether it is accepted or not. More... | |
void | LoadParametersFromTree (TTree *partree, bool loadObservables=true) |
Load parameters and observables from tree. More... | |
void | LoadMCMCParameters (TTree &partree) |
Load MCMC parameters from parameter tree: nchains, proposal function type, scales. More... | |
virtual bool | ParameterTreeMatchesModel (TTree *partree, bool checkObservables=true) |
Check parameter tree against model. More... | |
void | LoadMCMC (const std::string &filename, std::string mcmcTreeName="", std::string parameterTreeName="", bool loadObservables=true) |
Load previous MCMC run. More... | |
void | LoadMCMC (TTree *mcmcTree, TTree *parTree, bool loadObservables=true) |
Load previous MCMC run. More... | |
bool | ValidMCMCTree (TTree *tree, bool checkObservables=true) const |
Check tree structure for MCMC tree. More... | |
bool | ValidParameterTree (TTree *tree) const |
Check tree structure for parameter tree. More... | |
void | CloseOutputFile () |
Close the root output file. More... | |
virtual void | Remarginalize (bool autorange=true) |
Marginalize from TTree. More... | |
void | PrepareToContinueMarginalization (const std::string &filename, const std::string &mcmcTreeName="", const std::string ¶meterTreeName="", bool loadObservables=true, bool autorange=true) |
Continue the marginalization already stored in another file. More... | |
virtual bool | UpdateMultivariateProposalFunctionCovariances (double a) |
Update multivariate proposal function covariances. More... | |
virtual bool | UpdateMultivariateProposalFunctionCovariances () |
Update multivariate proposal function covariances. More... | |
void | CalculateCholeskyDecompositions () |
Calculate Cholesky decompositions needed for multivariate proposal function. More... | |
void | UpdateChainIndex (int chain) |
Keep track of which chain is currently computed (within a thread). More... | |
Additional Inherited Members | |
Static Public Member Functions inherited from BCIntegrate | |
static void | IntegralUpdaterMC (const std::vector< double > &sums, const int &nIterations, double &integral, double &absprecision) |
Updates info about integrator. | |
Static Public Member Functions inherited from BCEngineMCMC | |
static double | RValue (const std::vector< double > &means, const std::vector< double > &variances, unsigned n, bool correctForSamplingVariability=true) |
Calculate R value of set of batches of samples—represented by their means and variances, all batches containing the same number of samples—according to Brooks & Gelman, "General
Methods for Monitoring Convergence of Iterative Simulations," (1988) More... | |
Protected Member Functions inherited from BCFitter | |
virtual double | GraphCorrection (unsigned) const |
Take care of bin width when creating a graph from the fit function. | |
Protected Member Functions inherited from BCIntegrate | |
virtual std::string | GetBestFitSummary (unsigned i) const |
Get string summarizing best fit for single variable. More... | |
unsigned | IntegrationOutputFrequency () const |
Determine frequency of output during integration. | |
void | LogOutputAtEndOfIntegration (double integral, double absprecision, double relprecision, int nIterations) |
Helper method to output at end of integration. More... | |
void | LogOutputAtIntegrationStatusUpdate (BCIntegrationMethod type, double integral, double absprecision, int nIterations) |
Helper method to output integration status. More... | |
void | LogOutputAtStartOfIntegration (BCIntegrationMethod type, BCCubaMethod cubatype) |
Helper method to output at beginning of integration. More... | |
virtual void | PrintBestFitSummary () const |
Print best fit to log. | |
virtual void | PrintMarginalizationSummary () const |
Print marginalization to log. More... | |
Protected Member Functions inherited from BCEngineMCMC | |
virtual void | PrintModelSummary () const |
Print model summary to log. More... | |
void | SetFillHistogram (int x, int y, bool flag) |
Set whether to fill 2D histogram y vs x: positive indices for parameters; negative for observables, starting at -1 and going more negative—observable index = -(index+1). More... | |
unsigned | UpdateFrequency (unsigned N) const |
return appropriate update interval More... | |
void | UpdateParameterTree () |
Update Paramater TTree with scales and efficiencies. More... | |
Protected Attributes inherited from BCFitter | |
bool | fErrorBandContinuous |
A flag for single point evaluation of the error "band". | |
double | fErrorBandExtensionLowEdgeX |
extends the lower edge of x range by the given value | |
double | fErrorBandExtensionLowEdgeY |
extends the upper edge of y range by the given value | |
double | fErrorBandExtensionUpEdgeX |
extends the upper edge of x range by the given value | |
double | fErrorBandExtensionUpEdgeY |
extends the upper edge of y range by the given value | |
unsigned | fErrorBandNbinsX |
Number of X bins of the error band histogram. | |
unsigned | fErrorBandNbinsY |
Number of Y bins of the error band histogram. | |
std::vector< double > | fErrorBandX |
The x positions where the error is calculated. | |
TH2D | fErrorBandXY |
The error band histogram. | |
int | fFitFunctionIndexX |
The index for function fits in x direction. | |
int | fFitFunctionIndexY |
The index for function fits in y direction. | |
BCDataSet | fFitterDataSet |
Needed for uncertainty propagation. | |
bool | fFlagFillErrorBand |
Flag whether or not to fill the error band. | |
bool | fFlagIntegration |
Flag for using the ROOT TH1::Integral method (true), or linear interpolation (false) | |
double | fPValue |
p value for goodness of fit | |
Protected Attributes inherited from BCModel | |
BCH1D | fBCH1DPosteriorDrawingOptions |
knowledge update plot 1D posterior options. More... | |
BCH1D | fBCH1DPriorDrawingOptions |
knowledge update plot 1D prior options. More... | |
BCH2D | fBCH2DPosteriorDrawingOptions |
knowledge update plot 2D posterior options. More... | |
BCH2D | fBCH2DPriorDrawingOptions |
knowledge update plot 2D prior options. More... | |
BCDataSet * | fDataSet |
A data set. More... | |
bool | fDrawPriorFirst |
flag for ordering of drawing of prior and posterior in knowledge update plots. More... | |
bool | fFactorizedPrior |
flag for whether factorized prior has been used. More... | |
BCPriorModel * | fPriorModel |
BCPriorModel object for drawing of knowledge update, and saving of samples according to prior. More... | |
Protected Attributes inherited from BCIntegrate | |
bool | fFlagIgnorePrevOptimization |
Flag for ignoring older results of optimization. | |
bool | fFlagMarginalized |
flag indicating if the model was marginalized | |
double | fSALogProb |
Log probability of current simulated annealing iteration. More... | |
int | fSANIterations |
Number of iterations for simualted annealing. More... | |
double | fSAT0 |
Starting temperature for Simulated Annealing. | |
double | fSATemperature |
Current temperature of simulated annealing algorithm. More... | |
double | fSATmin |
Minimal/Threshold temperature for Simulated Annealing. | |
std::vector< double > | fSAx |
Current simulated annealing parameter point. More... | |
Protected Attributes inherited from BCEngineMCMC | |
BCH1D | fBCH1DdrawingOptions |
A BCH1D (with no histogram) for storing BCH1D drawing options. More... | |
BCH2D | fBCH2DdrawingOptions |
A BCH2D (with no histogram) for storing BCH2D drawing options. More... | |
bool | fCorrectRValueForSamplingVariability |
flag for correcting R value for initial sampling variability. More... | |
std::vector< TH1 * > | fH1Marginalized |
Vector of 1D marginalized distributions. | |
std::vector< std::vector< TH2 * > > | fH2Marginalized |
Vector of 2D marginalized distributions. More... | |
double | fHistogramRescalePadding |
factor for enlarging range of histograms when rescaling. More... | |
unsigned | fInitialPositionAttemptLimit |
Maximum number of attempts to make to set the initial position. More... | |
BCEngineMCMC::InitialPositionScheme | fInitialPositionScheme |
Variable which defines the initial position. More... | |
std::vector< double > | fLocalModes |
Vector of local modes. More... | |
int | fMCMCCurrentIteration |
The current iteration number. More... | |
double | fMCMCEfficiencyMax |
The maximum allowed efficiency for MCMC. | |
double | fMCMCEfficiencyMin |
The minimum required efficiency for MCMC. | |
bool | fMCMCFlagWriteChainToFile |
Flag to write Markov chains to file. | |
bool | fMCMCFlagWritePreRunToFile |
Flag to write pre run to file. | |
std::vector< std::vector< double > > | fMCMCInitialPosition |
The intial position of each Markov chain. More... | |
std::vector< double > | fMCMCInitialScaleFactors |
User-provided initial values of the scale factors of the factorized proposal function. More... | |
unsigned | fMCMCNChains |
Number of Markov chains ran in parallel. | |
int | fMCMCNIterationsConvergenceGlobal |
Number of iterations needed for all chains to convergence simultaneously. | |
unsigned | fMCMCNIterationsPreRunCheck |
Number of iterations between scale adjustments and convergence checks in pre-run. More... | |
unsigned | fMCMCNIterationsPreRunMax |
Maximum number of iterations for a Markov chain prerun. | |
unsigned | fMCMCNIterationsPreRunMin |
Minimum number of iterations for the pre-run. | |
unsigned | fMCMCNIterationsRun |
Number of iterations for a Markov chain run. | |
unsigned | fMCMCNLag |
The lag for the Markov Chain. | |
TFile * | fMCMCOutputFile |
Output file for for writing MCMC Tree. More... | |
std::string | fMCMCOutputFilename |
Output filename for for writing MCMC Tree. More... | |
std::string | fMCMCOutputFileOption |
Output file open option for for writing MCMC Tree. More... | |
BCEngineMCMC::Phase | fMCMCPhase |
The phase of the run. More... | |
unsigned | fMCMCPreRunCheckClear |
Number of iterations between clearing of convergence stats in pre-run. More... | |
double | fMCMCProposalFunctionDof |
Degree of freedom of Student's t proposal. More... | |
std::vector< std::vector< double > > | fMCMCProposalFunctionScaleFactor |
Scale factors for proposal functions. More... | |
bool | fMCMCProposeMultivariate |
Flag for using multivariate proposal function. More... | |
std::vector< double > | fMCMCRValueParameters |
The R-values for each parameter. | |
double | fMCMCRValueParametersCriterion |
The R-value criterion for convergence of parameters. | |
double | fMCMCScaleFactorLowerLimit |
Lower limit for scale factors. | |
double | fMCMCScaleFactorUpperLimit |
Upper limit for scale factors. | |
std::vector< ChainState > | fMCMCStates |
The current states of each Markov chain. More... | |
std::vector< BCEngineMCMC::Statistics > | fMCMCStatistics |
Statistics for each Markov chain. More... | |
BCEngineMCMC::Statistics | fMCMCStatistics_AllChains |
Statistics across all Markov chains. More... | |
TTree * | fMCMCTree |
The tree containing the Markov chains. More... | |
unsigned int | fMCMCTree_Chain |
Chain number for storing into tree. | |
ChainState | fMCMCTree_State |
MC state object for storing into tree. | |
bool | fMCMCTreeLoaded |
flag for whether MCMC Tree successfully loaded. More... | |
bool | fMCMCTreeReuseObservables |
flag for whether to reuse MCMC Tree's observables. More... | |
double | fMultivariateCovarianceUpdateLambda |
weighting parameter for multivariate-proposal-function covariance update. More... | |
unsigned | fMultivariateCovarianceUpdates |
Number of multivariate-proposal-function covariance updates performed. More... | |
double | fMultivariateEpsilon |
multivariate-proposal-function cholesky-decomposition nudge. More... | |
std::vector< TMatrixD > | fMultivariateProposalFunctionCholeskyDecomposition |
Cholesky decompositions for multivariate proposal function. More... | |
std::vector< TMatrixDSym > | fMultivariateProposalFunctionCovariance |
Covariance matrices used in multivariate proposal functions. More... | |
double | fMultivariateScaleMultiplier |
factor to multiply or divide scale factors by in adjusting multivariate-proposal-function scales. More... | |
std::string | fName |
Name of the engine. More... | |
BCAux::BCTrash< TObject > | fObjectTrash |
Storage for plot objects with proper clean-up. | |
BCObservableSet | fObservables |
User-calculated Observables Set. | |
BCParameterSet | fParameters |
Parameter settings. | |
TTree * | fParameterTree |
The tree containing the parameter information. More... | |
TRandom3 | fRandom |
Random number generator. | |
std::vector< std::pair< int, int > > | fRequestedH2 |
Vector of pairs of indices for which 2D histograms should be stored. More... | |
bool | fRescaleHistogramRangesAfterPreRun |
flag for rescaling of histograms after pre-run. More... | |
std::string | fSafeName |
Safe name of the engine for use in naming ROOT objects. More... | |
Detailed Description
A class for fitting histograms with functions.
- Version
- 1.0
- Date
- 11.2008
This class allows fitting of efficiencies defined as a ratio of two TH1D histograms using a TF1 function. It uses binomial probabilities calculated based on the number of entries in histograms. This is only applicable if the numerator is a subset of the denominator.
Definition at line 39 of file BCEfficiencyFitter.h.
Member Enumeration Documentation
Enumerator | |
---|---|
kDataPointRMS |
Draw mean and standard deviation. |
kDataPointSmallestInterval |
Draw mean and smallest 68% interval. |
kDataPointCentralInterval |
Draw mean and central 68% interval. |
Definition at line 46 of file BCEfficiencyFitter.h.
Constructor & Destructor Documentation
BCEfficiencyFitter::BCEfficiencyFitter | ( | const TH1 & | trials, |
const TH1 & | successes, | ||
const TF1 & | func, | ||
const std::string & | name = "efficiency_fitter_model" |
||
) |
Constructor.
- Parameters
-
trials The histogram with the number of trials. successes The histogram with the number of successes. func The fit function. name name fo the model
Definition at line 30 of file BCEfficiencyFitter.cxx.
|
virtual |
The default destructor.
Definition at line 75 of file BCEfficiencyFitter.cxx.
Member Function Documentation
double BCEfficiencyFitter::CalculatePValueFast | ( | const std::vector< double > & | par, |
BCEfficiencyFitter::ToyDataInterface * | callback, | ||
unsigned | nIterations = 100000 |
||
) |
Calculate the p-value using fast-MCMC.
In every iteration, a new toy data set is created. By providing a suitable implementation of ToyDataInterface, the user can calculate the distribution of an arbitrary statistic. Each toy data set as well as the expected values for the parameter values are passed on to the interface.
- Parameters
-
par A set of parameter values callback requires class with operator(...) defined. nIterations number of toy data sets generated by the Markov chain
- Returns
- p-value.
Definition at line 280 of file BCEfficiencyFitter.cxx.
double BCEfficiencyFitter::CalculatePValueFast | ( | const std::vector< double > & | par, |
unsigned | nIterations = 100000 |
||
) |
Calculate the p-value using fast-MCMC.
- Parameters
-
par A set of parameter values nIterations number of pseudo experiments generated by the Markov chain
- Returns
- p-value.
Definition at line 273 of file BCEfficiencyFitter.cxx.
|
virtual |
Draw the data in the current pad.
Definition at line 138 of file BCEfficiencyFitter.cxx.
|
virtual |
Draw the fit in the current pad.
Implements BCFitter.
Definition at line 193 of file BCEfficiencyFitter.cxx.
|
virtual |
Performs the fit.
- Returns
- Success of action.
Implements BCFitter.
Definition at line 118 of file BCEfficiencyFitter.cxx.
|
inline |
- Returns
- The histogram with the number of successes.
Definition at line 100 of file BCEfficiencyFitter.h.
|
inline |
- Returns
- The histogram with the number of trials
Definition at line 95 of file BCEfficiencyFitter.h.
bool BCEfficiencyFitter::GetUncertainties | ( | int | n, |
int | k, | ||
double | p, | ||
double & | xexp, | ||
double & | xmin, | ||
double & | xmax | ||
) |
Calculates the central value and the lower and upper limits for a given probability.
- Parameters
-
n n for the binomial. k k for the binomial. p The central probability defining the limits. xexp The central value. xmin The lower limit. xmax The upper limit.
- Returns
- Success of action.
Definition at line 380 of file BCEfficiencyFitter.cxx.
|
virtual |
The log of the prior probability.
Overloaded from BCModel.
- Parameters
-
parameters A vector of doubles containing the parameter values. The log of the conditional probability. Overloaded from BCModel. parameters A vector of doubles containing the parameter values.
Implements BCModel.
Definition at line 78 of file BCEfficiencyFitter.cxx.
The documentation for this class was generated from the following files:
- /root/bat/models/base/BCEfficiencyFitter.h
- /root/bat/models/base/BCEfficiencyFitter.cxx