Bibliography
[1]

F. Beaujean, A. Caldwell, D. Kollár, and K. Kröninger. p-values for model evaluation. Phys.Rev.D, 83:012004, 2011.

[2]

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov chain Monte Carlo. CRC press, 2011.

[3]

Giulio D'Agostini. Bayesian Reasoning in Data Analysis: A Critical Introduction. World Scientific, 2003.

[4]

A. Gelman and D.B. Rubin. Inference from iterative simulation using multiple sequences. Stat.Sci., 7(4):457–472, 1992.

[5]

Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data analysis, volume 2. Chapman & Hall/CRC Boca Raton, FL, USA, 2014.

[6]

Heikki Haario, Eero Saksman, and Johanna Tamminen. An adaptive metropolis algorithm. Bernoulli, 7(2):pp. 223–242, 2001.

[7]

John A. Hartigan. Bayes theory. Springer, 1983.

[8]

Edwin T. Jaynes and G. Larry Bretthorst. Probability theory. Cambridge University Press, 2003.

[9]

Maurice George Kendall, Alan Stuart, Anthony O'Hagan, Jonathan Forster, and J. K. Ord. Kendall's Advanced Theory of Statistics: Bayesian Inference. Arnold, 2004.

[10]

David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.

[11]

C.P. Robert and G. Casella. Monte Carlo statistical methods. Springer, 2004.

[12]

G. O. Roberts, A. Gelman, and W. R. Gilks. Weak convergence and optimal scaling of random walk metropolis algorithms. Ann.Appl.Probab., 7(1):pp. 110–120, 1997.

[13]

Jeffrey S Rosenthal and others. Optimal proposal distributions and adaptive mcmc. Handbook of Markov Chain Monte Carlo, pages 93–112, 2011.

[14]

D. S. Sivia and John Skilling. Data analysis: a Bayesian tutorial. Oxford University Press, 2006.

[15]

Darren Wraith, Martin Kilbinger, Karim Benabed, Olivier Cappe, Jean-Francois Cardoso, and others. Estimation of cosmological parameters using adaptive importance sampling. Phys.Rev.D, 80:023507, 2009.