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Chapter 1

Main Page

For the impatient

For a quick tutorial covering the basic features, jump directly to the basic tutorial.

The purpose of this document is to introduce the Bayesian Analysis Toolkit (BAT), a C++ package providing tools
to

• compare model predictions with data,

• draw conclusions on the validity of a model as a representation of the data,

• and to extract the values of the free parameters of a model.

BAT was originally developed at the Max Planck institute for physics in Munich, Germany, in
the context of particle physics. BAT uses ROOT for data handling and graphical output.

How to read this document

If you are new to BAT, we recommend to start with the [basic tutorial](Ge�ing started) to quickly get you going.
If you then want to learn more, check the brief introduction to the statistical basics in Bayesian Statistics. The
core algorithm of BAT is Markov chain Monte Carlo, described in Markov chain Monte Carlo. Further chapters
describe other tools of BAT, such as Optimization, specific statistical models, and advanced features.

http://mpp.mpg.de
https://root.cern.ch/


2 Main Page

Further help

Please visit our home page for an overview of papers, research, and other activities related to BAT. The code
development takes place over at github.

This document is meant to is quickly enable to you to find your way around BAT. We describe the common
workflow and explain how to solve some not-so-common tasks. To keep the size of this document manageable,
we refer to the html reference guide in which all classes, methods etc. are documented. The BAT
source code comes with many examples that illustrate how to use the various features. You can browse them
online.

If you run into a problem with BAT, the preferred method is to create a new issue on github. This allows
other users to easily find your issue online and benefit from the solution. If you provide some code for us to
reproduce the problem, we can help you much faster. Have a look at issues with the label troubleshooting
or question.

For general questions or comments that do not belong into the public in the form of issues, you can contact the
developers at bat@mpp.mpg.de.
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Chapter 2

Installation instructions

This document provides a short description of how to compile and use BAT on your computer.

Platforms

BAT has been developed on Linux. The installation, unit tests, and examples are run and known to work on
Linux and Mac OS X. On Linux, we test with gcc and on Mac OS X we use clang but both compilers should work
on either platform.

Windows is not supported.

Dependencies

It is understood that all commands shown below are to be entered into a terminal.

Required: Basic tools

BAT itself uses only C++03 features. Compilation and tests work fine with gcc >= 4.3 and clang >= 3.3. But
recent versions of ROOT (see below) may require a C++11 compliant compiler.

Under Debian or Ubuntu, you can install the essential requirements with

sudo apt-get install build-essential curl

In order to use the development version of BAT instead of an o�icial release, some more packages are needed

sudo apt-get install autoconf automake git-core libtool

Building and installing works with autoconf >= 2.63 and automake >= 1.10. To run the tests, a more recent
automake version is needed, v1.15 is known to be su�icient.



4 Installation instructions

Required: ROOT

ROOT is an object-oriented data-analysis framework. At http://root.cern.ch/, you can obtain the
source code as well as binary distributions for a number of Linux distributions and Mac OS X versions. We advise
to download the latest production release of ROOT. BAT is compatible with ROOT >=5.34.19 and ROOT 6. We
regularly run unit tests with ROOT 5 and ROOT 6 to ensure backward compatibility.

On Linux, an alternative is to check your package manager for the availability of ROOT packages. Usually these
packages are rather old but o�en they are good enough to build BAT. For example on Ubuntu systems up to
16.04, you can conveniently install the requirements with

sudo apt-get install libroot-graf2d-postscript-dev libroot-graf3d-g3d-dev\
libroot-math-foam-dev libroot-math-minuit-dev\
libroot-math-physics-dev libroot-math-mathmore-dev\
libroot-roofit-dev root-system-bin

Note

For the interface to RooFit/RooStats, ROOT must be compiled with support for RooFit and MathMore, the la�er
relies on the GNU scientific library (GSL).

Optional: Cuba

Cuba is a library containing general-purpose multidimensional integration algorithms. It can be obtained from
http://www.feynarts.de/cuba/. BAT is compatible with Cuba versions 3.3 through at least 4.2.

Cuba is not necessary to run BAT. We recommend it for model comparison where expensive integrals are needed.
Cuba provides integration routines tuned for performance, which are useful for integration in problems with not
too many dimensions (∼10). By default, Cuba will evaluate in parallel and take all idle cores; the number of cores
can be set through an environment variable. For a single core, set

CUBACORES=1

The recommended way to get Cuba is to configure BAT with the option

--with-cuba=download

This will download a compatible version of Cuba to the local subdirectory external/cuba-VERSION,
compile it, and configure BAT to use it.

If you want to compile Cuba manually, make sure it is built with position-independent code:

./configure CFLAGS=’-fPIC -O3 -fomit-frame-pointer -ffast-math -Wall’
make
make install
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5

Building

Obtaining BAT

You can download the latest release of BAT from http://mpp.mpg.de/bat/. Open a terminal, unpack
the tarball usually named like BAT-x.x.tar.gz (here x.x is the version number) and switch to the directory

tar -xzf BAT-x.x.tar.gz
cd BAT-x.x

Alternatively, you can clone the git repository https://github.com/bat/bat (we recommend using
the master branch):

git clone https://github.com/bat/bat
cd bat
./autogen.sh

Now start the configuration with

./configure

This will check your system for all components needed to compile BAT and set up the paths for installation. You
can add the option --prefix=/path/to/install/bat to ./configure. The BAT library files will
then be installed to $prefix/lib and the include files to $prefix/include. The default installation
prefix is /usr/local, which requires super-user privileges.

You can list all available options using

./configure --help

In the following, we describe the most useful options in detail.

ROOT

The configure script checks for ROOT availability in the system and fails if ROOT is not installed. You can
specify the ROOTSYS directory using --with-rootsys=/path/to/rootsys

BAT support for RooFit/RooStats is turned o� by default. The feature can be turned on explicitly with --
enable-roostats. The configure script will check whether the version of ROOT is su�icient and whether
ROOT was compiled with RooFit/RooStats support.

openMP

Support for openMP threading to run multiple Markov chains in parallel is available through the configure option
--enable-parallel; it is disabled by default. This requires a version of gcc accepting the -fopenmp
flag, anything >= 4.2 should su�ice. Note that if threads are enabled, the default number of threads actually
used is implementation dependent and may also depend on the current load of the CPU. Manual control over
the number of threads is achieved entirely by openMP means such as se�ing the environment variable OMP_←↩
NUM_THREADS before running an executable.

The default version of clang does not implement openMP.
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6 Installation instructions

Cuba

If you configured BAT with the option --with-cuba=download, BAT will download, compile, and use
Cuba automatically. For manual configuration, use the configure option --with-cuba[=DIR] to enable
Cuba. If you installed Cuba including the partview executable, the Cuba installation path will be derived
from its location. Otherwise, the configure script will search forlibcuba.a andcuba.h in the system paths.
If you manually specify the Cuba install path as DIR, configure will look in DIR/lib/ and DIR/include/
instead. For more fine-grained control, use--with-cuba-include-dir=/path/to/cuba/header
and --with-cuba-lib-dir=/path/to/cuba/lib.

Advanced options

If you want to be able to step through BAT line by line with a debugger, use --enable-debug. This slows
down execution as it turns o� code optimization but it improves the compilation time. Another way to speed
up the build is to create only shared libraries if you don't need static libraries: --disable-static. Finally,
you can reduce the output to the terminal with --enable-silent-rules.

Compile

A�er a successful configuration, run

make
make install

to compile and install BAT. Note that depending on the se�ing of the installation prefix you might need super-
user privileges to be able to install BAT and run sudo make install instead of plain make install.
In the former case, you might need to run sudo ldconfig just once to help the loader pick up the new
libraries immediately.

System setup

A�er installation, BAT o�ers two mechanisms to make BAT available:

1. The script bat-config returns details of the BAT installation directories and compilation se�ings; see
bat-config.

2. The file bat.pc contains the same information as above and can be used by the more powerful pkg-
config; e.g.,

pkg-config --modversion bat
pkg-config --libs bat

If you do not install BAT to the system directories, you need to manually add the path to bat-config,
bat.pc, the libraries, and the include files to the search paths. Depending on your shell, the set of commands
on linux for bash-compatible shells is

BATPREFIX="/bat/install/prefix"
export PATH="$BATPREFIX/bin:$PATH"
export LD_LIBRARY_PATH="$BATPREFIX/lib:$LD_LIBRARY_PATH"
export CPATH="$BATPREFIX/include:$CPATH"
export PKG_CONFIG_PATH="$BATPREFIX/lib/pkgconfig:$PKG_CONFIG_PATH"
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7

and for csh-compatible shells is

set BATPREFIX = /bat/install/prefix
setenv PATH "${BATPREFIX}/bin:${PATH}"
setenv LD_LIBRARY_PATH "${BATPREFIX}/lib:${LD_LIBRARY_PATH}"
setenv CPATH "${BATPREFIX}/include:${CPATH}"
setenv PKG_CONFIG_PATH "${BATPREFIX}/lib/pkgconfig:${PKG_CONFIG_PATH}"

If you want to make BAT permanently available, add the above commands to your login script, for example to
.profile or to .bashrc.

On Mac OS X you do not have to set up LD_LIBRARY_PATH because we use the rpath option to make BAT
compatible with the SIP feature enabled by default on Mac OS X starting with El Capitan.

Updating $CPATH is required if you work with interactive ROOT macros that use BAT (both for ROOT 5 and
6).

The minimal setup does not require se�ing PKG_CONFIG_PATH to run BAT unless you want to integrate BAT
into another probject using pkg-config. BAT itself does not use pkg-config.

Including BAT in your project

The most basic way to compile and link a file example.cxx with BAT is

gcc ‘bat-config --cflags‘ ‘bat-config --libs‘ example.cxx -o

In a makefile, simply query bat-config to set appropriate variables. However, there will be an error at
runtime, for example in interactive ROOT macros, if

libBAT.so, libBATmodels.so, libBATmtf.so,
libBAT.rootmap, libBATmodels.rootmap, libBATmtf.rootmap

are not in the directories searched by the library loader; see above how to setup the LD_LIBRARY_PATH and
the CPATH.

Interactive ROOT macros

Due to problems in ROOT 6.02.00, it is important to create an instance of a BAT class before calling any free
function defined in the BAT libraries. Else cling will emit confusing error messages. For example, the
right order would be

int main() {
BCLog::OpenLog("log.txt");
BCAux::SetStyle();
...

}

instead of the other way around around because OpenLog creates a singleton object.

Contact

Please consult the BAT web page http://mpp.mpg.de/bat/ for further information. In case of questions
or problems, please don't hesitate to create an issue at https://github.com/bat/bat/issues/ or
contact the authors directly via email through bat@mpp.mpg.de.
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Chapter 3

Ge�ing started

To demonstrate the basic usage of BAT, we will build an example analysis step by step. Step one, naturally, is
to install BAT—please refer to the installation chapter in this manual or online. To check if you have BAT
installed and accessible, run the following command

bat-config

in your terminal. It should output a usage statement. This program outputs information about your BAT
installation:

bat-config Flag Returned Information
--prefix Path to BAT installation

--version BAT version identifier
--libs Linker flags for compiling code using BAT

--cflags C++ compiler flags for compiling code using BAT

--bindir Path to BAT binaries directory

--incdir Path to BAT include directory

--libdir Path to BAT libraries directory

BAT has a second executable, which creates for you the files necessary to start a basic analysis. We will use this
executable to initialize our tutorial project:

bat-project MyTut MyMod

This will create a directory called MyTut that contains

Makefile a makefile to compile our tutorial project

runMyTut.cxx the C++ source to an executable to run our tutorial project

MyMod.h the C++ header for our tutorial model MyMod
MyMod.cxx the C++ source for our tutorial model MyMod

If BAT is installed correctly, you can compile and run this project already:

cd MyTut
make
./runMyTut

https://github.com/bat/bat/blob/master/INSTALL.md


10 Ge�ing started

BAT will issue a series of errors telling you your model has no parameters. Because of course we haven't actually
put anything into our model yet. Let's do that.

3.1 Defining a model

To define a valid BAT model we must make three additions to the empty model that bat-project has
created:

1. we must add parameters to our model;

2. we must implement a log-likelihood function;

3. and we must implement or state our priors.

We will start with a simple model that fits a normal distribution to data, and so has three parameters: the mode
( µ) and standard deviation ( σ) of our distribution, and a scaling factor ("height"). We will start with flat priors
for all.

How you store and access your data is entirely up to you. For this example, we are going to fit to a binned data
set that we store as a ROOT histogram in a private member of our model class. In the header, add to the class

#include <TH1D.h>

...

class MyMod : public BCModel
{

...

private:
TH1D fDataHistogram

};

And in the source file, we initialize ourfDataHistogram in the constructor; let's also fill it with some random
data, which ROOT can do for us using a TF1:

#include "MyMod.h"
#include <TF1.h>

...

// ---------------------------------------------------------
MyMod::MyMod(const std::string& name)

: BCModel(name),
fDataHistogram("data", ";mass [GeV];count", 100, 5.0, 5.6)

{
// create function to fill data according to
TF1 data_func("data_func", "exp(-0.5*((x - 5.27926) / 0.04)^2)", 5.0, 5.6);

// fill data histogram randomly from data_func 1,000 times
fDataHistogram.FillRandom("data_func", 1e3);

}
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3.1 Defining a model 11

3.1.1 Adding parameters

To add a parameter to a model, call its member function BCModel::AddParameter:

bool AddParameter(const std::string& name, double min, double max, const std::string& latexname = "", const
std::string& unitstring = "")

You must indicate a parameter's name and its allowed range, via min and max. Each parameter must be added
with a unique name. BAT will also create a "safe version" of the name which removes all non alpha-numeric
characters except for the underscore, which is needed for naming of internal storage objects. Each parameter
name should also convert to a unique safe name; BAT will complain if this is not the case (and AddParameter
will return false).

Optionally, you may add a display name for the parameter and a unit string, both of which are used when BAT
creates plots.

The most logical place to add parameters to a model is in its constructor. Let us now edit MyMod.cxx to add
our mode, standard deviation, and height parameters inside the constructor:

MyMod::MyMod(const std::string& name)
: BCModel(name),

fDataHistogram("data", ";mass [GeV];count", 100, 5.0, 5.6)
{

...

AddParameter("mu", 5.27, 5.29, "#mu", "[GeV]");
AddParameter("sigma", 25e-3, 45e-3, "#sigma", "[GeV]");
AddParameter("height", 0, 10, "", "[events]");

}

I have chosen the ranges because I have prior information about the data: the mode of my distribution will be
between 5.27 and 5.29; the standard deviation will be between 0.025 and 0.045; and the height will be between 0
and 10. When we provide a prior for a parameter, p0(λ), the prior BAT uses is

P0(λ) =



p0(λ), if λ ∈ [λmin, λmax],
0, otherwise.

(3.1)

So keep mind that the ranges your provide for parameters become part of the prior: BAT will not explore pa-
rameter space outside of the range limits you provide.

If you have wri�en the code correctly for adding parameters to your model, your code should compile. BAT will
again, though, issue an error if you try to run runMyTut, since we are still missing priors.

3.1.2 Se�ing prior distributions

There are two ways we may set the prior, P0(~λ) for a parameter point: We can override the function that returns
the log a priori probability for a model (BCModel::LogAPrioriProbability) and code anything we can dream
of in C++:

double MyMod::LogAPrioriProbability(const std::vector<double>& pars)
{

...
}
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12 Ge�ing started

In this case, you have to make sure the prior is properly normalized if you wish to compare di�erent models as
BAT will not do this for you.

Or we can set individual priors for each parameter, and BAT will multiply them together for us including the
proper normalization. If each parameter has a prior that factorizes from all the others, then this is the much
be�er option. In this case, we must not override LogAPrioriProbability. Instead we tell BAT what the
factorized prior is for each parameter, by adding a BCPrior object to each parameter a�er we create it:

#include <BAT/BCGaussianPrior.h>

...

MyMod::MyMod(const std::string& name)
: BCModel(name),

fDataHistogram("data", ";mass [GeV];count", 100, 5.0, 5.6)
{

...

// add parameters for Gaussian distribution
AddParameter("mu", 5.27, 5.29, "#mu", "[GeV]");
GetParameters().Back().SetPrior(new BCGaussianPrior(5.28, 2e-3));

AddParameter("sigma", 25e-3, 45e-3, "#sigma", "[GeV]");
GetParameters().Back().SetPrior(new BCGaussianPrior(35e-3, 3e-3));

AddParameter("height", 0, 10, "", "[events]");
GetParameters().Back().SetPriorConstant();

}

We could create a BCConstantPrior object for height just as we created a BCGaussianPrior object for mu
and sigma, but BAT has a convenient function that creates one for us.

We can now compile our code and run it. The results will be meaningless, though, since we have yet to define
our likelihood.

3.1.3 Defining a likelihood

The heart of our model is the likelihood function—more specifically, since BAT works with the natural logarithm
of functions, our log-likelihood function.

Given a histogrammed data set containing numbers of events in each bin, our statistical model is the product of
Poisson probabilities for each bin—the probability of the events observed in the bin given the expectation from
our model function:

L(~λ) ≡
∏
i

Poisson(ni |νi), (3.2)

where ni is the number of events in bin i and νi is the expected number of events given our model, which we
will take as the value of our model function at the center of the bin, mi ,

νi ≡ f (mi) =
1

√
2πσ

exp
{(
−

(mi − µ)2

2σ2

)}
. (3.3)

Working with the log-likelihood, this transforms into a sum:

logL(~λ) ≡
∑
i

logPoisson(ni |νi). (3.4)

BAT conveniently has a function to calculate the logarithm of the Poisson distribution (with observed x and
expected λ) for you:
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double BCMath::LogPoisson(double x, double lambda)

Let us code this into our log-likelihood function:

#include <BAT/BCMath.h>

#include <TMath.h>

...

// ---------------------------------------------------------
double MyMod::LogLikelihood(const std::vector<double>& pars)
{

// store our log-likelihood as we loop through bins
double LL = 0.;

// loop over bins of our data
for (int i = 1; i <= fDataHistogram.GetNbinsX(); ++i) {

// retrieve observed number of events
double x = fDataHistogram.GetBinContent(i);

// retrieve bin center
double m = fDataHistogram.GetBinCenter(i);

// calculate expected number of events, using ROOT Gaus function
double nu = TMath::Gaus(m, pars[0], pars[1], true);

// add to log-likelihood sum
LL += BCMath::LogPoisson(x, nu);

}

// return log-likelihood
return LL;

}

3.2 Looking at the output

Our model class is now ready to go. Let's just make one edit to the runMyTut.cxx file to change our model
name from the default "name_me" to something sensible:

// create new MyMod object
MyMod m("gaus_mod");

We can now compile and run our project:

1 make
2 ./runMyTut

This will sample from the posterior probability distribution and marginalize the results, saving plots to gaus←↩
_mod_plots.pdf. In that file you should see the 1D and 2D marginalizations of our three parameters:

\
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Figure 3.1 1D Posteriors of Gaussian distribution model.
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Figure 3.2 2D Posteriors of Gaussian distribution model.

In each plot, we see the global mode and the marginalized mean and standard deviation of the posterior distri-
bution; and three credibility intervals.

BAT has also printed a summary of the results to the log file and command line. This includes the global mode

Summary : Global mode:
Summary : 0) Parameter "mu" : 5.279741 +- 0.001072076
Summary : 1) Parameter "sigma" : 0.040267 +- 0.00089553
Summary : 2) Parameter "height" : 6 +- 0.1897

and marginalized posteriors:

Summary : (0) Parameter "mu" :
Summary : Mean +- sqrt(Variance): 5.279748 +- 0.001065279
Summary : Median +- central 68% interval: 5.279749 + 0.00105881 - -0.00106418
Summary : (Marginalized) mode: 5.2797
Summary : 5% quantile: 5.278005
Summary : 10% quantile: 5.278381
Summary : 16% quantile: 5.278685
Summary : 84% quantile: 5.280808
Summary : 90% quantile: 5.281112
Summary : 95% quantile: 5.281498
Summary : Smallest interval containing 69.8% and local mode:
Summary : (5.2786, 5.2808) (local mode at 5.2797 with rel. height 1; rel. area 1)
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3.3 Adding an observable

We can store the posterior distribution of any function of the parameters of our model using BAT's BC←↩
Observable's. Let us suppose we want to know the posterior distribution for the total number of events our
model predicts—the signal yield; and we want to know the standard deviation's relation to the mean: σ/µ. In
our constructor, we add the observables in the same way we added our parameters:

// ---------------------------------------------------------
MyMod::MyMod(const std::string& name)

: BCModel(name),
fDataHistogram("data", "mass [GeV];count", 100, 5.0, 5.6)

{
...

AddObservable("SignalYield", 900, 1100, "Y_{S}", "[events]");
AddObservable("Resolution",

100. * GetParameter("sigma").GetLowerLimit() / GetParameter("mu").GetUpperLimit(),
100. * GetParameter("sigma").GetUpperLimit() / GetParameter("mu").GetLowerLimit(),
"#sigma / #mu", "[%]");

}

Note that an observable does not need a prior since it is not a parameter; but it does need a range for se�ing the
marginalized histogram's limits. Since we know already that the answer will be 1000 events with an uncertainty
of
√
1000, we set the range for the yield to [900, 1100].

And we need to calculate this observable in our CalculateObservables(...) member function. Un-
comment it in the header file MyMod.h:

void CalculateObservables(const std::vector<double> & pars);

and implement it in the source:

// ---------------------------------------------------------
void MyMod::CalculateObservables(const std::vector<double>& pars)
{

// store total of number events expected
double nu = 0;

// loop over bins of our data
for (int i = 1; i <= fDataHistogram.GetNbinsX(); ++i)

// calculate expected number of events in that bin
// and add to total expectation
nu += pars[2] * TMath::Gaus(fDataHistogram.GetBinCenter(i), pars[0], pars[1], true);

// store in the observable
GetObservable(0) = nu;

// Store sigma as percentage of mu:
GetObservable(1) = 100. * pars[1] / pars[0];

}

Compile and run runMyTut.cxx and you will see new marginalized distributions and text output for the
observables:

Summary : (3) Observable "SignalYield" :
Summary : Mean +- sqrt(Variance): 1000.9 +- 31.53
Summary : Median +- central 68% interval: 1000.6 + 31.937 - -31.194
Summary : (Marginalized) mode: 1003
Summary : 5% quantile: 949.52
Summary : 10% quantile: 960.52
Summary : 16% quantile: 969.44
Summary : 84% quantile: 1032.6
Summary : 90% quantile: 1041.9
Summary : 95% quantile: 1053.5
Summary : Smallest intervals containing 68.7% and local modes:
Summary : (970, 1032) (local mode at 1003 with rel. height 1; rel. area 0.97769)
Summary : (1032, 1034) (local mode at 1033 with rel. height 0.57407; rel. area 0.022311)

As we expected, the mean of the total yield posterior is just the number of events in our data set and the standard
deviation is its square root.
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3.4 Further Output

BAT has a few more output options than the two mentioned above. The code for turning them on is already
included in the runMyTut.cxx generated by bat-project. You can write the Markov-chain samples to
a ROOT TTree for further postprocessing by uncommenting the following line:

m.WriteMarkovChain(m.GetSafeName() + "_mcmc.root", "RECREATE");

You can also modify the plo�ing output to include more plots per page. Without specifying, we used the default
of one plot per page. Let's instead plot 4 plots (in a 2-by-2 grid):

m.PrintAllMarginalized(m.GetSafeName() + "_plots.pdf", 2, 2);

There are four more graphical outputs from BAT. Turn them on by uncommenting the following lines

m.PrintParameterPlot(m.GetSafeName() + "_parameters.pdf");
m.PrintCorrelationPlot(m.GetSafeName() + "_correlation.pdf");
m.PrintCorrelationMatrix(m.GetSafeName() + "_correlationMatrix.pdf");
m.PrintKnowledgeUpdatePlots(m.GetSafeName() + "_update.pdf", 3, 2);

(We have edited the last line to specify 3-by-2 printing.)

The parameter plot graphically summarizes the output for all parameters (and in a separate page, all observables)
in a single image:

 [GeV]µ  [GeV]σ height [events]
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+0.043413

+0.036251

+6.8636

+5.1597
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Smallest 68% interval and local mode Global mode

Figure 3.3 Summary of parameter marginalizations.
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The correlation plot and the correlation matrix summarize graphically the correlations among parameters and
observables:
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Figure 3.4 Parameter and observable correlation plots.
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Figure 3.5 Parameter and observable correlation matrix.

The knowledge update plots show the marginalized priors and marginalized posteriors together in one plot for
each variable (and also for 2D marginalizations):
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Figure 3.6 Knowledge update plots.

Note that this really shows the marginalized prior: Here, having used factorized priors, we see exactly the fac-
torized priors. But had we used a multivariate prior, then we'd see what this looks like for each parameter. We
also see what the prior of our observables look like given the priors of the variables they are functions of. These
are very useful things to know.
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Chapter 4

Bayesian Statistics

In this chapter, we give a concise and necessarily incomplete overview of Bayesian statistics. Our intention is
to cover the bare minimum and introduce those quantities that appear in BAT. As a toolkit, BAT allows the user
complete freedom in modeling. There is vast literature on the theory, applications, and modeling; for example,
consider [8] [7] [14] [10] [3] [9] [5] for a comprehensive overview.

4.1 Basic terminology

Bayesian statistics is a framework for quantitative inductive or plausible reasoning; i.e., the optimal processing
of incomplete information. The basic idea is to associate a degree of belief to logical propositions; e.g., the mass
of the Higgs boson is 125 GeV. From fundamental axioms about reasoning, one can then show that the calculus of
degree of belief is simply the ordinary calculus of probability theory; see [8] for a thorough discussion. Deductive
reasoning is included as the limiting case in which the degree of belief is either 0 or 1.

From now on, we will use the symbol P(A) to denote both the degree of belief in proposition A and the probability
of A. In our applications below, A is o�en one value out of a continuum, so we use P(A) also to denote the
probability density of A. The conditional probability of A given B is P(A | B).

The two central tasks of the natural sciences are to learn about nature from data and to make predictions for
(future) experiments. A model M is a proxy for all discrete pieces of information relevant to calculating the
degree of belief. The model can contain parameters θ that take on values in a continuum, perhaps subject to
constraints as for example θ1 ≥ 0. Bayesian reasoning provides an update rule to adjust the degree of belief
based on new information available in the form of observed data D. This update rule is the celebrated Bayes'
theorem

P(θ | D, M) ∝ P(D |θ, M)P(θ | M) (4.1)

P(θ | M) is the prior density, P(D |θ, M) is called the probability of the data when treated as a function of D, and
known as the likelihood when considering the dependence on θ , for fixed D. The model-dependent normalization
constant is known as the evidence or marginal likelihood:

Z =
∫

dθ P(D |θ, M)P(θ | M). (4.2)

Finally, the le�-hand side P(θ |D, M) is the posterior density. Prior and posterior (density is usually omi�ed)
represent the state of knowledge about the parameter θ before and a�er seeing the data. Note that θ appears
on opposite sides of | in P(D |θ, M) and P(θ |D, M). That's why Bayes' theorem is also known as the theorem of
inverse probability.
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4.1.1 Marginalization

Suppose there are two parameters, θ = (θ1, θ2), and θ1 is the parameter of interest whereas θ2 is a nuisance
parameter. In Bayes' theorem, there is no fundamental distinction between parameters of interest and nuisance
parameter, they are all just parameters. But o�en the goal of the analysis is to extract the posterior of θ1 while
θ2 is only needed at an intermediate stage; for example in order to correctly model the measurement process of
D. From the joint posterior P(θ1, θ2 |D), we compute the marginalized posterior and can remove the dependence
on θ2 by integration

P(θ1 |D) =
∫

dθ2 P(θ1, θ2 |D). (4.3)

4.1.2 Model comparison

If there is only a single model under consideration, and no potential for cconfusion, the model label M is im-
plied and usually omi�ed from the equations. But suppose that there are two competing models, M1, M2, with
parameters θ1,2, that quantitatively predict the outcome D of an experiment. The task is to find the model with
the higher degree of belief. Using Bayes' theorem, the posterior odds of the models are easily found as

P(M1 |D)
P(M2 |D)

= B12 ·
P(M1)
P(M2)

, (4.4)

where the Bayes factor of M1 versus M2, B12, is just the ratio of the evidences

B12 =
P(D |M1)
P(D |M2)

=
Z1

Z2
=

∫
dθ1 P(D |θ1, M1)P(θ1, M1)∫
dθ2 P(D |θ2, M2)P(θ2, M2)

(4.5)

The prior odds P(M1)/P(M2) represent the relative degree of belief in the models, independent of the data. %
The data are accounted for in the Bayes factor. The Bayes factor quantifies the relative shi� of degree of belief
induced by the data. In general, dim θ1 , dim θ2, and without loss of generality let dim θ1 < dim θ2. The
Bayes factor automatically penalizes M2 for its larger complexity, as the prior mass is spread out over a higher-
dimensional volume. However, this can be compensated if the likelihood P(D |θ2, M2) is significantly higher in
regions of reasonably high prior density; i.e. the Bayes factor implements Occam's razor the simplest model that
describes the observations is preferred.

4.2 Goodness of fit

In the Bayesian approach, there is, however, no straightforward answer to the following question: if there is
only one model at hand, how to decide if that model is su�icient to explain the data, or if the search for a be�er
model needs to continue? The standard procedure to tackle this problem of evaluating the goodness of fit is to
define a test statistic T = T (D) and to evaluate the following tail-area probability, that is the p value

p ≡
∫
T>Tobs

dT P(T |M). (4.6)

Care has to be taken in the usage, computation, and interpretation of p values. An introduction a Bayesian
interpretation of p values with applications in BAT is available at [1] ; see also the references therein.
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4.3 Representation in BAT

In BAT, a model M is represented as a C++ subclass of BCModel. The crucial parts are to define the likeli-
hood P(D | θ, M) BCModel::LogLikelihood, the prior P(θ | M) BCModel::LogAPrioriProbability, and the
parameters θ . From these quantities, BAT can compute the unnormalized posterior P(θ | D, M) BCModel::←↩
LogProbabilityNN. To avoid numerical overflow, BAT operates on the log scale whenever possible. The key
methods of BCModel that a user has to implement are

virtual double LogLikelihood(const std::vector<double>& params)
virtual double LogAPrioriProbability(const std::vector<double>& params)

The parameter values are passed in simply as numbers to likelihood and prior, all parameters are assumed to be
real and continuous. Discrete parameters are not supported. The support of θ is a hyperrectangle whose bounds
are given by the bounds of the individual parameters when added to the model with BCModel::AddParameter

bool BCModel::AddParameter(const std::string& name, double min, double max,
const std::string& latexname = "",
const std::string& unitstring = "")

The optional latexname and unitstring are used only for labeling plot axes; it's intended usage is to
pre�y up plots. For example, a parameter theta representing a time measured in seconds is defined as

AddParameter("theta", 0, 1, "#theta", "[s]");

and whenever theta appears on the axis of a plot, it will appear as θ [s]. Note that the plots are created with
ROOT, so the latexname has to be in ROOT syntax which is basically LaTeX syntax but the backslash \ is
replaced by the hash #.
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Chapter 5

Integration

5.1 Motivation

The reason that BAT exists is that nearly any Bayesian analysis these days is too complicated to be handled
analytically. To address typical questions like

• What is known about a single parameter taking into account the uncertainty on all other parameters?

• How are parameters correlated?

one needs to be able to compute and visualize 1D and 2D marginal distributions; cf. Marginalization. These are
defined as integrals over the posterior; for example the 2D marginal distribution is

P(θ1, θ2 | D) =
∫ ∏

i,1,2
dθi P(θ | D). (5.1)

To do model comparison, one has to compute the evidence, that is the integral over all parameters

Z =
∫

dθ P(D |θ, M)P(θ | M). (5.2)

Therefore Bayesian inference in practice requires good integration techniques. These methods are bundled in
the class BCIntegrate with the exception of the Markov chain code in BCEngineMCMC; see also the Structure
of the Code.

For low-dimensional problems, deterministic integration methods are usually the fastest and most robust but
for higher dimensions, Monte Carlo techniques are the most e�icient tools known. Depending on the se�ing,
BAT defaults to deterministic methods for d ≤ 2, 3 dimensions and uses Monte Carlo for d > 3.

5.2 Marginalization

The main use case for BAT is to estimate and visualize the marginal distributions of the posterior. Given a model
m, all marginal distributions are estimated as histograms by

m.MarginalizeAll();

The individual distributions can be accessed using unsigned or std::string as keys
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// one-dimensional
BCH1 d0 = m.GetMarginalized(0);
BCH1D d1 = m.GetMarginalized("name");

// two-dimensional
BCH2D d2 = m.GetMarginalized(3, 4);
BCH2D d3 = m.GetMarginalized("name_of_first_parameter", "name_of_second_parameter");

Directly access the underlying histogram with

// one-dimensional
BCH1 h0 = m.GetMarginalizedHistogram(0);

// two-dimensional
BCH2D h1 = m.GetMarginalizedHistogram(3, 4);

In case of many (nuisance) parameters, it may be useful to constrain which histograms are stored because the
number of 2D marginals grows like n · (n − 1)/2 with the number of parameter n. This can be achieved either
for all 1D or 2D marginal distributions or for individual combinations. For example:

m.AddParameter("x", 0, 1);
m.AddParameter("y", 0, 1);
m.SetFlagFillHistograms(false); // no 1D marginals for ‘x‘, ‘y‘ stored
m.AddParameter("z", 0, 1);
m.SetFillHistogramParPar(0, 2, false); // no ‘x‘ vs ‘z‘ 2D marginal

See also

BCEngineMCMC::SetFillHistogramParPar, BCEngineMCMC::SetFillHistogramParObs, BC←↩
EngineMCMC::SetFillHistogramObsObs, BCEngineMCMC::SetFlagFillHistograms

The method for marginalizing can be selected as follows

m.SetMarginalizationMethod(method);

where method is an enum in BCIntegrate::BCMarginalizationMethod

method Details
kMargMetropolis Metropolis algorithm; see Markov chain Monte Carlo.

kMargMonteCarlo Sample mean integration in each histogram bin. Least e�icient method.

kMargGrid Evaluate target at each bin center. Most e�icient for 1D and 2D.

kMargDefault Use kMargGrid for d ≤ 2, else kMargMetropolis.

The availability of marginalization methods can be queried at runtime using BCIntegrate::Check←↩
MarginalizationAvailability.

In case any pre- or postprocessing needs to happen to set up data structures, we provide the hooks vir-
tual void BCIntegrate::MarginalizePreprocess and virtual void BCIntegrate::Marginalize←↩
Postprocess. They are empty by default and can be overloaded in a user model.

5.3 Evidence

In BAT terminology, the evidence or normalization constant of a model m with the default method is computed
as
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double evidence = m.Normalize();

Once the normalization has been determined, BCModel::LogProbability returns the normalized value of the
posterior as opposed to the not normalized result from BCModel::LogProbabilityNN.

Note

Internally only BCModel::LogProbabilityNN is called when integrating or optimizing because it only
requires the user to override BCModel::LogLikelihood and to set a prior.

BCModel::Normalize returns the evidence on the linear scale. Choose the method of integration explicitly
with

double evidence = m.Integrate(method);

where method is an enum in BCIntegrate::BCIntegrationMethod.

BCIntegrationMethod Details
kIntMonteCarlo Sample mean. Usually least e�icient.

kIntCuba Use a method from cuba.
kIntGrid Approximate Riemann sum over a dense grid for d ≤ 3.

kIntLaplace Laplace approxation. Only approximately valid for peaked unimodal
integrands. Incorrect if distribution is heavy tailed or if the mode is
near a boundary. Very fast. No uncertainty estimate. Only method
implemented on the log scale.

kIntDefault Use Cuba if available. Else use kIntGrid for d ≤ 3 and kInt←↩
MonteCarlo for d > 3.

General termination criteria for all integration methods except kIntLaplace are the desired absolute preci-
sion εa and relative precision εr and the minimum and maximum number of iterations:

m.SetAbsolutePrecision(1e-6);
m.SetRelativePrecision(1e-8);
m.SetNIterationsMin(2000);
m.SetNIterationsMax(50000);

The integration terminates if
|Z − Ẑ | ≤ max(εa, εr Z ) (5.3)

where Ẑ is the current estimate of the evidence.

5.3.1 Rescaling

In case the log likelihood is very small or very large, going to the linear scale may take it to exactly zero or
infinity in finite precision. This o�en happens in practice if the log likelihood is a sum of N terms. For example,
assume each factor is 0.5. Then exp(0.5N ) = ∞ on the computer for N ≥ 1420 using double precision. To
avoid this problem, you can rescale the log likelihood by manually subtracting the value at the mode inside
LogLikelihood.

Another option, if requirements are satisfied, is to use the Laplace method. It is naturally implemented on
the log scale. While the standard interface to all integration methods via BCIntegrate::Normalize() always
transforms to the linear scale, calling BCIntegrate::IntegrateLaplace() directly returns the evidence on the
log scale.
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5.3.2 Cuba

The Cuba package itself has four di�erent integration methods. Cuba is an external dependency; see the in-
stallation instructions on how to build BAT with Cuba support. If Cuba is available, select the Cuba method
with

m.SetCubaIntegrationMethod(method);
m.Integrate();
// alternative
m.IntegrateCuba(method);

where method is an enum in BCIntegrate::BCCubaMethod

BCCubaMethod Details
kCubaVegas VEGAS algorithm by Lepage

kCubaSuave Suave algorithm.

kCubaDivonne Divonne algorithm.

kCubaCuhre Cuhre algorithm. Essentially quadrature in higher dimensions. Su�ers from curse
of dimensionality but most e�icient and robust in low dimensions.

kCubaDefault For d = 1, use VEGAS, for d = 2, 3, use Cuhre, and for d > 3, use Divonne.

Note

Cuba evaluates the posterior in parallel by default. If the posterior is not thread-safe (see Multithreading
and Thread Safety), it is recommended to set the environment variable CUBACORES to 1.

Each Cuba method comes with various parameter values to set. We have taken over default values from the ex-
ample that comes with Cuba but they are by no means optimal for every problem. Please experiment and consult
the Cuba manual that comes with the Cuba source code from http://www.feynarts.de/cuba/. All
options are accessible in the namespace BCCubaOptions. An example with bogus values

BCCubaOptions::Suave o = m.GetCubaSuaveOptions();
o.flatness = 5;
o.nnew = 5000;
o.nmin = 15;
m.SetNIterationsMax(1e7);
m.SetCubaOptions(o);
m.IntegrateCuba(BCIntegrate::kCubaSuave);

5.4 Slices

To get a quick visualization of a complicated posterior, a slice, or projection, may be preferable to a full marginal-
ization. That is, all parameters except one [two] are held fixed (instead of integrated over as in marginalization)
and the remaining parameter[s] are evaluated on a regular grid. In other words, the conditional distribution

P(θ1 | θ\1, D) =
P(θ | D)

P(θ\1 | D)
. (5.4)

The slice is returned as one [two] dimensional histogram. This is achieved with the various variants of BC←↩
Integrate::GetSlice.

In a posterior where all parameters are independent, the marginal and conditional distributions coincide because

P(θ1 | θ\1, D) =
P(θ\1 | D)P(θ1 | D)

P(θ\1 | D)
= P(θ1 | D). (5.5)
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Note

Independence rarely holds in practice, so marginalization is still useful.

For example, in a Gaussian posterior with independent parameters, we first find the mode and use these pa-
rameter values to find the 1D conditional distribution of the first parameter. In this example, the result is just a
Gaussian. Here is how to find the result in general, for non-Gaussian or non-independent posteriors:

#include <TH1.h>
#include <TCanvas.h>
...
int main()
{
...

m.FindMode(m.GetBestFitParameters());

TCanvas c;
unsigned nIterations;
double log_max;
int nbins = 100;
bool normalize = true;
TH1* slice = m.GetSlice(0, nIterations, log_max, m.GetBestFitParameters(), nbins, normalize);
slice->Draw("HISTSAME");
c.Print("slice.pdf");
delete slice;

...
}
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Chapter 6

Markov chain Monte Carlo

6.1 Motivation

Among the integration methods introduced in Integration, the Monte Carlo method is the most powerful one in
high dimensions. The term Monte Carlo is used as a synonym for the use of pseudo-random numbers. Markov
chains are a particular class of Monte Carlo algorithms designed to generate correlated samples from an arbitrary
distribution. The central workhorse in BAT is an adaptive Markov chain Monte Carlo (MCMC) implementation
based on the Metropolis algorithm. It allows users to marginalize a posterior without requiring manual tuning of
algorithm parameters. In complicated cases, tweaking the parameters can substantially increase the e�iciency,
so BAT gives users full access to all tuning parameters.

6.2 Foundations

6.2.1 Monte Carlo integration

We begin with the fundamental Monte Carlo principle. Suppose we have a posterior probability density P(θ |D),
o�en called the target density, and an arbitrary function f (θ) with finite expectation value under P

EP[ f ] =
∫

dθ P(θ |D) f (θ) < ∞. (6.1)

Then a set of draws {θi : i = 1 . . . N } from the density P, that is θi ∼ P, is enough to estimate the expectation
value. Specifically, the integral can be replaced by the estimator (distinguished by the symbol )̂

FEP[ f ] ≈
1
N

N∑
i=1

f (θi), θ ∼ P (6.2)

As N → ∞, the estimate converges almost surely at a rate ∝ 1/
√

N by the strong law of large numbers if∫
dθ P(θ |D) f 2(θ) < ∞ [11] . This is true for independent samples from the target but also for correlated
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samples. The only thing that changes is the increased variance of the estimator due to correlation.

Figure 6.1 Histogram approximation to the 1D marginal.

How does this Eq. 6.2 relate to Bayesian inference? Upon applying Bayes’ theorem to real-life problems, one
usually has to marginalize over several parameters, and this can usually not be done analytically, hence one
has to resort to numerical techniques. In low dimensions, say d ≤ 2, quadrature and other grid-based methods
are fast and accurate, but as d increases, these methods generically su�er from the curse of dimensionality. The
number of function evaluations grows exponentially as O

(
md

)
, where m is the number of grid points in one

dimension. Though less accurate in few dimensions, Monte Carlo — i.e., random-number based — methods are
the first choice in d & 3 because the computational complexity is (at least in principle) independent of d. Which
function f is of interest to us? For example when integrating over all but the first dimension of θ , the marginal
posterior probability that θ1 is in [a, b) can be estimated as

P(a ≤ θ1 ≤ b|D) ≈
1
N

N∑
i=1

1θ1∈[a,b) (θi)

with the indicator function

1θ1∈[a,b) (θ) =



1, θ1 ∈ [a, b)
0, else

This follows immediately from the Monte Carlo principle with f (θ) = 1θ1∈[a,b) (θ). The major simplification
arises as we perform the integral over d − 1 dimensions simply by ignoring these dimensions in the indicator
function. If the parameter range of θ1 is partitioned into bins, then the above holds in every bin, and defines
the histogram approximation to P(θ1 |D). In exact analogy, the 2D histogram approximation is computed from
the samples for 2D bins in the indicator function. For understanding and presenting the results of Bayesian
parameter inference, the set of 1D and 2D marginal distributions is the primary goal. Given samples from the
full posterior, we have immediate access to all marginal distributions at once; i.e., there is no need for separate
integration to obtain for example P(θ1 |D) and P(θ2 |D). This is a major benefit of the Monte Carlo method in
conducting Bayesian inference.

6.2.2 Metropolis algorithm

The key ingredient in BAT is an implementation of the Metropolis algorithm to create a Markov chain; i.e. a
sequence of (correlated) samples from the posterior. We use the shorthand MCMC for Markov chain Monte
Carlo.

E�icient MCMC algorithms are the topic of past and current research. This section is a concise overview of the
general idea and the algorithms available in BAT. For a broader overview, we refer the reader to the abundant
literature; e.g., [11] [2] .
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In BAT, there are several variants of the random-walk Metropolis Hastings algorithm available. The basic idea is
captured in the 2D example plot. Given an initial point θ0, the Metropolis algorithm produces a sample in each
iteration t = 1 . . . N as follows:

• Propose a new point θ̃

• Generate a number u from the uniform distribution on [0,1]

• Set θ t = θ̃ if u < P(θ̃ |D)
P(θ t−1 |D)

• Else stay, θ t = θ t−1

3

3

1

1

1

1

1

2

2

2

Figure 6.2 2D random walk with the Metropolis algorithm.

In the example plot, the chain begins in the lower le� corner. Rejected moves are indicated by the dashed arrow,
accepted moves are indicated by the solid arrow. The circled number is the number of iterations the chain stays
at a given point θ = (θ1, θ2).

In each iteration t, one updates the estimate of the 1D marginal distribution P(θ1 |D) by adding the first coor-
dinate of θ t to a histogram. Repeat this for all other coordinates to update the other (d − 1) 1D marginals. And
redo it for all pairs of coordinates to estimate the 2D marginals.

As a concrete example, suppose the chain has 5 iterations in 2D:

t θ t
1 (1.1, 2.3)
2 (1.1, 2.3)
3 (3.8, 1.8)
4 (2.4, 5.2)
5 (1.8, 4.2)

Let us choose a histogram to approximate the 1D marginal posterior for θ1 with five bins from [n, n + 1) for
n = 0 . . . 4 such that the right edge of the bin is not included. Up to t = 5, the histogram is
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n weight
0 0
1 3
2 1
3 1
4 0

In the end, we usually normalize the histogram so it estimates a proper probability density that integrates to 1.

6.2.3 Convergence

Since samples are not independent, the initial point has some e�ect on Markov chain output. The asymptotic
results guarantee that, under certain conditions (see [11] or [2]) a chain of infinite length is independent of the
initial point. In practice, we can only generate a finite number of points so a decision has to be made when the
chain has run long enough. One helpful criterion is to run multiple chains from di�erent initial positions and to
declare convergence if the chains mixed; i.e. explore the same region of parameter space. Then the chains have
forgo�en their initial point.

Non-convergence is a problem that can have many causes including simple bugs in implementing the posterior.
But there are properly implemented posteriors for which a Markov chain has di�iculties to explore the parameter
space e�iciently, for example because of strong correlation, degeneracies, or multiple well separated modes.

6.3 Implementation in BAT

Implementing the Metropolis algorithm, one has to decide on how to propose a new point based on the current
point, that is one needs the proposal function q(θ̃ | θ t, ξ) with adjustable parameters ξ . The main di�erence
between MCMC algorithms is typically given by di�erent choices of q. The Metropolis algorithm doesn't specify
which q to choose, so we can and have to select a function q and tune ξ according to our needs.

In BAT, the proposal is symmetric around the current point

q(θ̃ | θ t, ξ) = q(θ t | θ̃, ξ). (6.3)

The Markov property implies that the proposal may only depend on the current point θ t and not on any previous
point. If the value of ξ is set based on a past sequence of iterations of the chain, we need two stages of sampling
in BAT, the prerun and the main run. In the prerun, the chain is run and periodically ξ is updated based on the
past iterations. In contrast, ξ is kept fixed in the main run to have a proper Markov chain.

6.3.1 Proposal functions

BAT o�ers two kinds of proposal function termed factorized and multivariate. The general form is either a Gaus-
sian or Student's t distribution. In the factorized case, the joint distribution is a product of 1D distributions. In
the multivariate case, a dense covariance matrix is used that allows correlated proposals. In either case, the de-
fault is Student's t distribution with one degree of freedom (dof); i.e., a Cauchy distribution. Select the proposal
like this:

m.SetProposeMultivariate(true);
m.SetProposalFunctionDof(5); // Student’s t with 5 degrees of freedom
m.SetProposalFunctionDof(-1); // Gaussian
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6.3.1.1 Multivariate proposal

Since

Introduced and set as the default in v1.0

Changing all d parameters at once within one iteration is an all-or-nothing approach. If the proposed move is
accepted, all parameters have changed for the price of a single evaluation of the posterior. If the move is rejected,
the new point is identical to the old point and the chain does not explore the parameter space.

We implement the adaptive algorithm by Haario et al. [6], [15]. In brief, the proposal is a multivariate Gaussian
or Student's t distribution whose covariance is learned from the covariance of samples in the prerun. An overall
scale factor is tuned to force the acceptance rate into a certain range.

the multivariate normal distribution

N (θ |µ,Σ) =
1

(2π)d/2
|Σ |−1/2 exp

(
−
1
2

(θ − µ)TΣ−1(θ − µ)
)

(6.4)

or the multivariate Student's t distribution

T (θ |µ,Σ, ν) =
Γ((ν + d)/2)
Γ(ν/2)(πν)d/2

|Σ |−1/2 (1 +
1
ν

(θ − µ)TΣ−1(θ − µ))−(ν+d)/2 (6.5)

can adapt in such a way as to e�iciently generate samples from essentially any smooth, unimodal distribution.
The parameter ν, the degree of freedom, controls the “fatness'' of the tails of T ; the covariance of T is related
to the scale matrix Σ as ν

ν−2 × Σ for ν > 2, while Σ is the covariance of N . Hence for finite ν, T has fa�er tails
than N , and for ν → ∞, T (θ |µ,Σ, ν) → N (θ |µ,Σ).

Before delving into the details, let us clarify at least qualitatively what we mean by an e�icient proposal. Our
requirements are

• that it allow to sample from the entire target support in finite time,

• that it resolve small and large scale features of the target,

• and that it lead to a Markov chain quickly reaching the asymptotic regime.

An important characteristic of Markov chains is the acceptance rate α, the ratio of accepted proposal points
versus the total length of the chain. We argue that there exists an optimal α for a given target and proposal.
If α = 0, the chain is stuck and does not explore the state space at all. On the contrary, suppose α = 1 and
the target distribution is not globally uniform, then the chain explores only a tiny volume where the target
distribution changes very li�le. So for some α ∈ (0, 1), the chains explore the state space well.

How should the proposal function be adapted? A�er a chunk of Nupdate iterations, we change two things. First, in
order to propose points according to the correlation present in the target density, the proposal scale matrix Σ is
updated based on the sample covariance of the last n iterations. Second, Σ is multiplied with a scale factor c that
governs the range of the proposal. c is tuned to force the acceptance rate to lie in a region of 0.15 ≤ α ≤ 0.35. The
α range is based on empirical evidence and the following fact: for a multivariate normal proposal function, the
optimal α for a normal target density is 0.234, and the optimal scale factor is c = 2.382/d as the dimensionality
d approaches ∞ and the chain is in the stationary regime [12] . We fix the proposal a�er a certain number of
adaptations, and then collect samples for the final inference step. However, if the Gaussian proposal function
is adapted indefinitely, the Markov property is lost, but the chain and the empirical averages of the integrals
represented by Eq. 6.1 still converge under mild conditions [6].

The e�iciency can be enhanced significantly with good initial guesses for c and Σ. We use a subscript t to denote
the status a�er t updates. It is o�en possible to extract an estimate of the target covariance by running a mode
finder like MINUIT that yields the covariance matrix at the mode as a by product of optimization. In the case
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of a degenerate target density, MINUIT necessarily fails, as the gradient is not defined. In such cases, one can
still provide an estimate as

Σ0 = diag(σ2
1, σ

2
2, . . . , σ

2
d) (6.6)

where σ2
i is the prior variance of the i-th parameter. The updated value of Σ in step t is

Σt = (1 − at )Σt−1 + atSt (6.7)

where St is the sample covariance of the points in chunk t and its element in row m and column n is computed
as

(St )mn =
1

Nupdate − 1

t ·Nupdate∑
i=(t−1) ·Nupdate

((θi)m − GEP[(θ)m])((θi)n − GEP[(θ)n]) (6.8)

The weight at = 1/tλ, λ ∈ [0, 1] is chosen to make for a smooth transition from the initial guess to the eventual
target covariance, the implied cooling is needed for the ergodicity of the chain if the proposal is not fixed at
some point [6]. One uses a fixed value of λ, and the particular value has an e�ect on the e�iciency, but the e�ect
is generally not dramatic; in this work, we set λ = 0.5 [15].

We adjust the scale factor c as described in the pseudocode shown below. The introduction of a minimum and
maximum scale factor is a safeguard against bugs in the implementation. The only example we can think of
that would result in large scale factors is that of sampling from a uniform distribution over a very large volume.
All proposed points would be in the volume, and accepted, so α ≡ 1, irrespective of c. All other cases that we
encountered where c > cmax hinted at errors in the code that performs the update of the proposal.

// default values
αmin = 0.15; αmax = 0.35;
cmin = 1e-5; cmax = 100;
β = 1.5;

// single update of the covariance scale factor
if (α > αmax && c < cmax) {

c *= β * c
} else if (α < αmin && c > cmin) {

c /= β
}

See also

BCEngineMCMC::SetMultivariateCovarianceUpdateLambda, BCEngineMCMC::SetMultivariate←↩
Epsilon, BCEngineMCMC::SetMultivariateScaleMultiplier

6.3.1.2 Factorized proposal

Since

Factorized was the default and only choice prior to v1.0 and continues to be available using BCEngine←↩
MCMC::SetProposeMultivariate(false)

The factorized proposal in d dimensions is a product of 1D proposals.

We sequentially vary one parameter at a time and complete one iteration of the chain once a new point has
been proposed in every direction. This means the chain a�empts to perform a sequence of axis-aligned moves
in one iteration.

Each 1D proposal is a Cauchy or Breit-Wigner function centered on the current point. The scale parameter is
adapted in the prerun to achieve an acceptance rate in a given range that can be adjusted by the user. Note that
there is a separate scale parameter in every dimension.

This means the posterior is called d times in every iteration. Since the acceptance rate is typically di�erent
from zero or one, the factorized proposal typically generates a new point in every iteration that di�ers from the
previous point in some but not all dimensions.
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6.3.1.3 Comparison

Comparing the factorized proposal to the multivariate proposal, we generally recommend the multivariate for
most purposes.

Use the factorized proposal if you can speed up the computation of the posterior if you know that some pa-
rameters did not change. This can be useful if the computation is expensive if some but not all parameters
change.

6.3.2 Prerun

During the prerun, the proposal is updated. BAT considers three criteria to decide when to end the prerun. The
prerun takes some minimum number of iterations and is stopped no ma�er what if the maximum number of
prerun iterations is reached. In between, the prerun terminates if the e�iciency and the R value checks are ok.
To perform the prerun manually, do

m.MetropolisPreRun();

In most cases this is not needed, because BCModel::MarginalizeAll calls BCEngineMCMC::Metropolis,
which will take care of the prerun and the main run and all the data handling associated with it. To force a
prerun to be run again, perhaps a�er it failed and some se�ings have been adjusted, do:

m.SetFlagPreRun(true);
m.MarginalizeAll();

6.3.2.1 E�iciency

The e�iciency, or acceptance rate, is the ratio of the accepted over the total number proposal moves. A small
e�iciency means the chain rarely moves but may then make a large move. A large e�iciency means the chain
explores well locally but may take a long time to explore the entire region of high probability. Optimality results
exists only for very special cases: Roberts and Rosenthal showed that for a Gaussian target with d independent
components and a Gaussian proposal, the optimal target e�iciency is 23.4 % for d ≥ 5 is but should be larger
for small d; e.g., 44 % is best in one dimension [13] . Based on our experience, we use a default range for the
e�iciency as [0.15, 0.35].

See also

BCEngineMCMC::SetMinimumE�iciency, BCEngineMCMC::SetMaximumE�iciency

6.3.2.2 R value

The R value [4] by Gelman and Rubin quantifies the estimated scale reduction of the uncertainty of an expec-
tation value estimated with the samples if the chain were run infinitely long. Informally, it compares the mean
and variance of the expectation value for a single chain with the corresponding results of multiple chains. If the
chains mix despite di�erent initial values, then we assume that they are independent of the initial value, the
burn-in is over, and the samples produce reliable estimates of quantities of interest. For a single chain, the R
value cannot be computed.

In BAT, we monitor the expectation value of each parameter and declare convergence if all R values are below a
threshold. Note that the R values are estimated from batches of samples, and they usually decrease with more
iterations but they may also increase, which usually is a clear indication that the chains do not mix, perhaps
due to multiple modes that trap the chains.

See also

BCEngineMCMC::SetRValueParametersCriterion Set the maximum allowed R value for all parame-
ters. By defition, R cannot go below 1 except for numerical inaccuracy. Default: 1.1
BCEngineMCMC::SetCorrectRValueForSamplingVariability The strict definition of R corrects the
sampling variability due finite batch size. Default: false
BCEngineMCMC::GetRValueParameters R values are computed during the prerun and they can be
retrieved but not set.
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6.3.2.3 Prerun length

Defining convergence automatically based on the e�iciency or the R value is convenient may be too conservative
if the user knows a good initial value, a good proposal, etc. For more control the minimum and maximum length
of the prerun can be set, too.

See also

BCEngineMCMC::SetNIterationsPreRunMin, BCEngineMCMC::SetNIterationsPreRunMax
BCEngineMCMC::SetNIterationsPreRunCheck sets the number of iterations between checks

If desired, the statistics can be cleared to remove the e�ect of a bad initial point with BCEngineMCMC::Set←↩
PreRunCheckClear a�er some set of iterations

For the user's convenience, multiple se�ings related to precision of the Markov chain can be set at once us-
ing BCEngineMCMC::SetPrecision. The default se�ing is m.SetPrecision(BCEngineMCMC::k←↩
Medium).

6.3.3 Main run

In the main run, the proposal is held fixed and each chain is run for BCEngineMCMC::GetNIterationsRun()
iterations.

See also

BCEngineMCMC::SetNIterationsRun

To reduce the correlation between samples, a lag can be introduced to take only every 10th element with BC←↩
EngineMCMC::SetNLag.

Generated by Doxygen



Chapter 7

Optimization

While sampling from a posterior with Markov chains, BAT will store the maximum value of the posterior that
it has seen (and the corresponing point in parameter space). But the sampling algorithm is designed to sample,
not to find a maximum value. To find the maximum point, BAT includes optimization methods. These are called
via BCIntegrate::FindMode, which takes optional arguments: You may give it a starting point; if you do not
specify one, BAT will start from the current maximum point. You can also specify the optimization method when
you call the function; or you can specify it in advance via BCIntegrate::SetOptimzationMethod.

By default, BAT replaces its currently held maximum point only if the newly found one has a greater poste-
rior. You can tell BAT to replace the currently held one regardless of whether optimization improves upon the
currently stored one via the function BCIntegrate::SetFlagIgnorePrevOptimization.

7.1 Minuit

BAT uses Minuit through ROOT's interface to it. To use it, set the optimization method to BCIntegrate::k←↩
OptMinuit.

Minuit is what is known as a gradient follower—it moves from a starting point in the direction that increases
the posterior until it finds a maximum. Minuit is much be�er at finding the exact location of a maximum than
sampling with Markov chains is, but it does not gaurantee that this maximum is the global maximum or only a
local one. Sampling with Markov chains can be�er identify the region of the global maximum than Minuit can.
So we recommend that you first marginalize your model and then call FindMode.

7.2 Simulated Annealing

BAT provides a simulated annealing algorithm for optimization. To use it, set the optimization method to BC←↩
Integrate::kOptSimAnn.

This algorithm is similar to the Metropolis-Hastings sampling one in that involves proposal of new points to
move to randomly in a neighborhood of the current point. But the neighborhood and the acceptance criteria
are regulated in such a way as to encourage motion towards the global maximum.

Using BAT, simulated annealing will in general not find the maximum point as precisely or rapidly as Minuit,
but it can more reliably find the global maximum instead of a local maximum. We therefore recommend calling
FindMode with BCIntegrate::kOptMinuit a�er calling it with kOptSimAnn. This is similar to first sam-
pling and then optimizing with Minuit; but simulated annealing is less calculationally expensive than sampling—
that is, it will call your likelihood less o�en. However, simulated annealing is not a sampling technique and will
not provide output samples for further o�line use.

There are several parameters that govern the running of simulated annealing. Please consult the code documen-
tation and C. Brachem's Implementation and test of a simulated annealing algorithm in the Bayesian Analysis Tookit
(2009) for how to set them. The most important option you may change is the proposal function. This is set via
BCIntegrate::SetSASchedule. The options are BCIntegrate::kSACauchy, BCIntegrate::kSABoltzmann,
and BCIntegrate::kSACustom. (The la�er requires you to set your own proposal function.)
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Predefined Models

8.1 Using BAT's Native Data Structures

8.2 E�iciency Fi�er

8.3 Graph Fi�er

8.4 Histogram Fi�er
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Chapter 9

Multi-template fi�er

the multi-template fi�er (mtf) is a tool which allows to fit several template histograms to a data histogram. the
content of the bins in the templates are assumed to fluctuate independently according to poisson distributions.
several channels can be fi�ed simultaneously.

9.1 Mathematical formulation

the multi-template fi�er is formulated in terms of bayesian reasoning. the posterior probability is proportional
to the product of the likelihood and the prior probability. the la�er can be freely chosen by the user whereas
the likelihood is predefined. it is a binned likelihood which assumes that the fluctuations in each bin are of
poisson nature and independent of each other. all channels, processes and sources of systematic uncertainties
are assumed to be uncorrelated.

the parameters of the model are thus the expectation values of the di�erent processes, λk , and the nuisance
parameters, δl .

9.1.1 Excluding systematic uncertainies

in case no sources of systematic uncertainty are taken into account the likelihood is defined as

l =
nch∏
i=1

nbin∏
j=1

λ
ni j
i j

ni j !
e−λi j , (9.1)

where nch and nbin are the number of channels and bins, respectively. ni j and λi j are the observed and expected
number of events in the jth bin of the ith channel. The expected number of events are calculated via

λi j =

Np∑
k=1

λi jk (9.2)

=

Np∑
k=1

λk · f i jk · ε ik , (9.3)

where f i j is the bin content of the jth bin in the normalized template of the kth process in the ith channel. ε ik
is the e�iciency of the kth process in the ith channel specified when se�ing the template. λk is the contribution
of the kth process and is a free parameter of the fit.
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9.1.2 Including Systematic Uncertainies

In case sources of systematic uncertainties are taken into account, the e�iciency ε ik is modified according to a
nuisance parameter:

ε ik → ε ik · (1 +
Nsyst∑
l=1

δl · ∆ε i jkl) , (9.4)

where δl is the nuisance parameter associated with the source of systematic uncertainty and∆ε i jkl is the change
in e�iciency due to the lth source of systematic uncertainty in the ith channel and jth bin for the kth process.

9.2 Creating the Fi�er

The main MTF class BCMTF is derived from the BCModel class. A new instance can be created via

BCMTF::BCMTF()
BCMTF::BCMTF(const char * name)

where the name of the MTF can be specified via argument name.

9.3 Adding a Channel

The MTF fits several channels simultaneously. These channels can be physics channels, e.g., Z0 → e+e− and
Z0 → µ+µ−, samples with disjunct jet multiplicity or entirely di�erent classes altogether. A new channel can be
added using the following method:

int BCMTF::AddChannel(const char * name)

where name is the name of the process, and the return value is an error code. Note that at least one channel
has to be added.

9.4 Adding a Data Set

Each channel added to the MTF has a unique data set which comes in form of a (TH1D) histogram. It can be
defined using the following method:

int BCMTF::SetData(const char * channelname, TH1D hist)

where channelname is the name of the channel and hist is the histogram representing the data. The return
value is an error code.
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9.5 Adding a Process

Each template that is fit to the data set corresponds to a process, where one process can occur in several channels.
The fit then defines the contribution of the process and thus each process comes with one model parameter. A
process can be added using the following method:

int BCMTF::AddProcess(const char * name,
double nmin = 0.,
double nmax = 1.) ,

where name is the name of the process and nmin and nmax are the lower and upper bound of the parameter
associated with the contribution of the process. The parameter is denoted λk (k = 1 . . . Np) in the Mathematical
formulation. Note that at least one process has to be added. A prior needs to be defined for each process, using
the default BCModel methods.

It is likely that a single process will have di�erent shapes in di�erent channels. Thus, templates for a process
need to be defined for each channel separately using the following method:

int BCMTF::SetTemplate(const char * channelname,
const char * processname,
TH1D hist,
double efficiency = 1.) ,

where channelname and processname are the names of the channel and the process, respectively. The
parameter hist is the (TH1D) histogram (or template) which represents the process. The histogram will be
normalized to unity and the entries in the normalized histogram are the probabilities to find an event of a
process k and channel i in bin j . This probability is denoted f i jk (i = 1 . . . Nch, j = 1 . . . Nb, k = 1 . . . Np)
in the Mathematical formulation. The last parameter, efficiency, is the e�iciency of the process in that
channel and is used to scale to template during the fit. This is needed if a process contributes with di�erent
amounts in two separate channels. The e�iciency is denoted ε ik (i = 1 . . . Nch, k = 1 . . . Np) in the Mathematical
formulation. The return value is an error code. Note that templates do not have to be set if the process does not
contribute to a particular channel.

9.6 Adding Systematic Uncertainties

Systematic uncertainties can alter the shape of a template. Sources of systematic uncertainty can be included
in the fit using nuisance parameters. This nuisance parameter is assumed to alter the original template linearly,
where values of -1, 0, and 1 correspond to the “downwards” shi�ed, nominal and “upwards shi�ed” template,
respectively. The nuisance parameters are denoted δl (l = 1 . . . Nsyst) in the Mathematical formulation. Shi�ed
refers to a change of one standard deviation. An example for a nuisance parameter could be the jet energy
scale (JES). With a nominal JES of 1 and and uncertainty of 5%, the scaled templates correspond to a JES of 0.95
and 1.05, respectively. A prior needs to be defined for each nuisance parameter which is usually chosen to be a
standard normal distribution. A source of systematic uncertainty can be added using the following method:

int BCMTF::AddSystematic(const char * name,
double min = -5.,
double max = 5.) ,

where name is the name of the source of systematic uncertainty and min and max are the lower and upper
bound of the nuisance parameter, respectively. The return value is an error code.

Since the di�erent sources of systematic uncertainty have an individual impact on each process and in each
channel, these need to be specified. Two method can be used to define the impact:
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int BCMTF::SetSystematicVariation(const char * channelname,
const char * processname,
const char * systematicname,
TH1D hist_up,
TH1D hist_down) ,

where channelname, processname and systematicname are the names of the channel, the process
and the source of systematic uncertainty. The (TH1D) histograms hist_up and hist_down are the his-
tograms corresponding to an “up”- and “down”-scaling of the systematic uncertainty of one standard deviation,
i.e., for each bin entry y they are calculated as

∆up = (yup − ynominal)/ynominal , (9.5)

∆down = (ynominal − ydown)/ynominal . (9.6)

Note the sign of the down-ward fluctuation. These histograms define the change of the bins in each template
in the e�iciency which is denoted ∆ε i jkl (i = 1 . . . Nch, j = 1 . . . Nb, k = 1 . . . Np, l = 1 . . . Nsyst). For example, if
the value for a particular bin of hist_up is 0.05, i.e., if the systematic uncertaintiy is 5% in that bin, then the
e�iciency of the process in that channel will be multiplied by (1 + 0.05). The return value is an error code.

The second variant does not take the di�erence in e�iciency, but calculates it internally from the absolute
values:

int BCMTF::SetSystematicVariation(const char * channelname,
const char * processname,
const char * systematicname,
TH1D hist,
TH1D hist_up,
TH1D hist_down) ,

where channelname, processname and systematicname are the names of the channel, the process
and the source of systematic uncertainty. The (TH1D) histograms hist, hist_up and hist_down are
the nominal histogram and the histograms corresponding to an “up”- and “down”-scaling of the systematic
uncertainty of one standard deviation. In this case, the histograms are not the relative di�erences but the
absolute values. The return value is an error code.

9.7 Running the Fit

The fit can be started using one of the standard BCModel fi�ing methods, e.g.

BCMTF::MarginalizeAll() ,
BCMTF::FindMode() .

9.8 Output

The MTF produces several outputs:

1. PrintAllMarginalized(const char∗ name) prints the marginalized distributions in 1D and
2D for all parameters, i.e., the processes and nuisance parameters into a PostScript file name.

2. PrintResults(const char∗ name) writes a summary of the fit into a text file name.

3. To print a stacked histogram of the templates and the data histogram in the file name using a set of
parameters parameters, do
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PrintStack(int channelindex,
const std::vector<double> & parameters,
const char * filename = "stack.pdf",
const char * options = "")

PrintStack(const char * channelname,
const std::vector<double> & parameters,
const char * filename = "stack.pdf",
const char * options = "")

For example, these could be the best fit results. Several options can be specified:

• logx: uses a log-scale for the x-axis.

• logy: uses a log-scale for the y-axis.

• logx: plot the x-axis on a log scale

• logy: plot the y-axis on a log scale

• bw: plot in black and white

• sum: draw a line corresponding to the sum of all templates

• stack: draw the templates as a stack

• e0: do not draw error bars

• e1: draw error bars corresponding to sqrt(n)

• b0: draw an error band on the expectation corresponding to the central 68% probability

• b1: draw bands showing the probability to observe a certain number of events given the expectation. The
green (yellow, red) bands correspond to the central 68% (95%, 99.8%) probability

9.9 Se�ings

Several se�ings can be changed which impact the fit.

• SetFlagEfficiencyConstraint sets a flag if the overall e�iciency (calculated from the value
given when se�ing a template and the corresponding systematic uncertainties) is constrained to be be-
tween 0 and 1 or not. The default value is true.

9.10 Analysis Facility

The analysis facility allows to perform a variety of analyses and ensemble tests for a given MTF. It can be created
using the constructor:

BCMTFAnalysisFacility::BCMTFAnalysisFacility(BCMTF * mtf)

where mtf is the corresponding MTF object.

9.11 Performing Ensemble Tests

Ensemble testing is done in two steps: first, ensembles are generated according to the processes defined in
the MTF. The ensembles are stored in root files. In a second step, the ensembles are analyzed using the MTF
specified.
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9.12 Creating Ensembles

Ensembles can be generated using several methods. A single ensemble can be generated using the following
method:

std::vector<TH1D> BCMTFAnalysisFacility::BuildEnsemble(const std::vector<double> & parameters)

where parameters is a set of parameters which corresponds to those in the template fi�er, i.e., the process
contributions and nuisance parameters. For most applications, the best fit parameters of the data set at hand is
used. The return value is a set of histograms corresponding to a pseudo data set for the di�erent channels.

A similar method is used to generate multiple ensembles:

std::vector<TH1D> BCMTFAnalysisFacility::BuildEnsembles(const std::vector<double> & parameters, int
nensembles)

where nensembles is the number of ensembles to be generated. The return value is a pointer to a TTree
object in which the ensembles are stored. The entries in the tree are the parameters and the number of entries
in each bin of the data histograms.

The third method is based on a tree where the tree contains a set of parameters for each ensemble. This option is
preferred if, e.g., the ensembles should be varied accoring to the prior probabilities. The method used to generate
ensembles is

std::vector<TH1D> BCMTFAnalysisFacility::BuildEnsembles(TTree * tree, int nensembles)

where tree is the input tree. Note that the ensembles are randomized, i.e., the first event in the tree does not
correspond to the first ensemble. This is done to avoid biases if the tree itself is the output of a Markov Chain.

9.13 Analyzing Ensembles

Ensemble tests can be performed usign the ensembles defined earlier or using a set of parameters. In the former
case, the method is:

TTree * BCMTFAnalysisFacility::PerformEnsembleTest(TTree * tree, int nensembles)

where tree is the tree of ensembles and nensembles is the number of ensembles to be analyzed. The return
value is a tree containing the information about the analyzed ensemble. The list of variables is

• parameter_i: the ith parameter value used at the generation of the ensemble.

• mode_global_i: the ith global mode.

• std_global_i: the ith standard deviation evaluated with the global mode.

• chi2_generated_i: the χ2 calculated using the parameters at generation of the ensemble for chan-
nel i.

• chi2_mode_i: the χ2 calculated using the global mode parameters for channel i.

• cash_generated_i: the Cash statistic (Likelihood ratio) calculated using the parameters at genera-
tion of the ensemble for channel i.
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• cash_mode_i: the Cash statistic (Likelihood ratio) calculated using the global mode parameters for
channel i.

• n_events_i: the number of events in the ensemble in channel i.

• chi2_generated_total: the total χ2 calculated using the parameters at generation of the ensem-
ble.

• chi2_mode_total: the total χ2 calculated using the global mode parameters.

• cash_generated_total: the total Cash statistic calculated using the parameters at generation of
the ensemble.

• cash_mode_total: the total Cash statistic calculated using the global mode parameters.

• n_events_total: the total number of events in the ensemble.

Ensemble tests can also be performed using the following methd:

TTree * BCMTFAnalysisFacility::PerformEnsembleTest(const std::vector<double> & parameters, int nensembles)

in which case the ensembles are generated internally using the parameters and are then analyzed.

By default the log messages for both the screen and the log-file are suppressed while performing the ensemble
test. This can be changed using

void BCMTFAnalysisFacility::SetLogLevel(BCLog::LogLevel level)

9.14 Performing Automated Analyses

The analysis facility also allows to perform an automated analysis over individual channels and or systematic
uncertainties.

9.14.1 Performing Single-Channel Analyses

The current data set can be analyzed automatically for each channel separately using the analysis facility method

int BCMTFAnalysisFacility::PerformSingleChannelAnalyses(const char * dirname, const char * options = "")

wheredirname is the name of a directory which will be created and into which all plots will be copied. Ifmcmc
is specified in the options then the MCMC will be run for each channel. The method creates all marginal-
ized distributions and results as well as an overview plot. If the option nosyst is specified, the systematic
uncertainties are all switched o�.

9.14.2 Performing Single Systematic Analyses

Similarly, the method

int BCMTFAnalysisFacility::PerformSingleSystematicAnalyses(const char * dirname, const char * options = "")

can be used to perform a set of analyses for each systematic uncertainty separately.
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9.14.3 Performing Calibration Analyses

Ensemble tests for di�erent sets of parameters can be automized by using the method

int BCMTFAnalysisFacility::PerformCalibrationAnalysis(const char * dirname,
const std::vector<double> & default_parameters,
int index,
const std::vector<double> & parametervalues,
int nensembles = 1000)

which can be used to easily generate calibration curves. The ensembles are generated for a set of parameters,
default_parameters where one of the parameters, index, can vary. The paramter values are defined
by parametervalues. nensembles defines the number of pseudo data sets used for each ensemble.
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Chapter 10

Structure of the Code

BAT is object-oriented and uses inheritance for code reuse. The single most important hierarchy is that of
BCModel. In most applications, a user would implement a model MyModel by either inheriting from BC←↩
Model directly or creating an instance of one of the Predefined Models and thus would inherit from BCModel
indirectly.

BCEngineMCMC

BCIntegrate

BCModel

This structure has the benefit that MyModel has native access to all things related to Markov chains due to
BCEngineMCMC and one can immediately optimize or integrate the posterior with the methods in BC←↩
Integrate. However, one has to keep in mind that multiple Markov chains for the same instance of MyModel
share the entire state of the object. This can lead to complications when MyModel::LogLikelihood is
called concurrently; see Multithreading and Thread Safety for more details.
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Chapter 11

Model Comparison

In case more than one model is defined to explain the same data set the BCModelManager can come in handy.
Separate BCModels m1 and m2 and their prior probabilities (70 % vs 30 %) are added to the model manager via

BCModelManager mgr;
mgr.AddModel(&m1, 0.7);
mgr.AddModel(&m2, 0.3);

For convenience, some of the most important methods for handling BCModels are forwarded to each model in
the manager. For example

mgr.SetPrecision(BCEngineMCMC::kQuick);
mgr.MarginalizeAll();

is equivalent to

for (unsigned i = 0; i < mgr.GetNModels(); ++i) {
mgr.GetModel(i)->SetPrecision(BCEngineMCMC::kQuick);
mgr.GetModel(i)->MarginalizeAll();

}

To do model comparison, the evidence is needed for each model, then the Bayes factors and the posterior odds
are immediately available. Models are index by an unsigned; the first model has index 0 etc.:

mgr.Integrate();
double B = mgr.BayesFactor(0, 1);
mgr.PrintModelComparisonSummary();

See also

examples/advanced/polynomialFit

https://github.com/bat/bat/tree/master/examples/advanced/advancedGraphFitter
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Output Options



56 Output Options

Generated by Doxygen



Chapter 13

Defining a factorized prior

If a model does not overload BCModel::LogAPrioriProbability, then its prior is the product of the individual
priors for each of its parameters. We call these the factorized priors. To set a parameter's prior call

BCParameter::SetPrior(BCPrior* const prior);

You can call factorized priors within your overloaded LogAPrioriProbability by querying the log of
the prior of a particular parameter with

BCParameter::GetLogPrior(double x)

The prior you set for a parameter need only inherit from BCPrior. BAT has several built in prior classes, such
as BCConstantPrior and BCGaussianPrior. You can implement new factorized priors by inheriting from the
BCPrior class. To illustrate how to do this, we will work through the construction of the Gaussian prior:

class BCGaussianPrior : public BCPrior

BCPrior is a pure-virtual class with three methods that must be overloaded:

double GetLogPrior(double x);
BCPrior* clone() const;
bool IsValid() const;

The first one contains the meat of our new prior:

double GetLogPrior(double x)
{

return -0.5 * (x - fMean) * (x - fMean) / fSigma / fSigma - log(fSigma) - 0.5 * log(2 * M_PI);
}

This is, naturally, the log of a Guassian prior. The second one should simply return a copy of the prior:

BCPrior* clone() const
{

return new BCGaussianPrior(*this);
}
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The last function is required for checking that everything that is needed by the prior is properly set. You'll
notice that our example calls on two member variables in its GetLogPrior: fMean and fSigma. So we
must check whether they have been properly set:

bool IsValid() const
{

return std::isfinite(fMean) and std::isfinite(fSigma) and fSigma > 0;
}

This checks that the mean and standard deviation are both finite and that the standard deviation is positive
semi-definite, as it need be.

Naturally to be of use, we also create a constructor that allows us to set the mean and standard deviation at
creation; and ge�ers and se�ers that allow us to access them. (See the source code of BCGaussianPrior for
their implementation.)

This is all that is required to create a new prior. BCPrior has several methods for ge�ing properties of the prior:
the mode; the integral over a range; the n'th raw, central, and standardized moments; the mean; the variance;
the standard deviation; the skewness; and the kurtosis. These functions make their own internal calculations
and need not be overloaded. If you wish to speed them up, or provide exact results, you may overload them. But
take care that you overload them to give back proper results! For example, the mode of the Gaussian distribution
is not simply fMean, since this presumes the range over which we query contains fMean. The more proper
implementation is

double GetMode(double xmin, double xmax)
{

if (fMean < xmin)
return xmin;

if (fMean > xmax)
return xmax;

return fMean;
}
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Sharing / Loading samples

You can output the samples of BAT's Markov chains in the form of a ROOT TTree saved in a TFile. You can
read these samples back into BAT using BCEmptyModel:

BCEmptyModel m("MyModel_mcmc.root");
m.Remarginalize();

where MyModel\_mcmc.root is a .root file produced by a BAT analysis—that is, it contains two T←↩
Tree's, X\_mcmc.root and X\_pars.root, where X is a prefix common to both trees. BAT will search
the file for two such trees matching the structures expected from BAT output. Alternatively, the constructor can
be called with the prefix specified explicitly:

BCEmptyModel::BCEmptyModel(const std::string& filename, const std::string& name, bool loadObservables).

The last argument tells switches on or o� the loading of BCObservable's stored in the TTree.

You can also use an instance of your own model instead of BCEmptyModel if you provide a constructor that
calls the

BCModel::BCModel(const std::string\&
filename, const std::string\& name, bool loadObservables)

constructor.

Note that instead of calling MarginalizeAll(), a reloaded BAT analysis is marginalized by calling Re-
marginalize().

All subsequent drawing or accessing of BCH1D and BCH2D objects is the same as if the analysis had been
run directly rather than reloaded. For most summary reports of BAT, the actual model itself is not needed—only
the samples. So you can share your results by sharing your ROOT output files without sharing your model
implementation.

Likewise, when outpu�ing to a ROOT file, BAT (by default) autosaves the Markov chains to the ouput file at
regular intervals. You can use the steps outlined above to check the state of an ongoing analysis using BC←↩
EmptyModel.
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Multithreading and Thread Safety

In a demanding analysis, a single evaluation of the posterior may take seconds or more. In an MCMC analysis,
this is then the bo�le neck. The overall time to solution can then be reduced by running multiple chains on
multiple threads.

Assuming BAT is configured with parallelization enabled (see the Installation instructions), the number of
threads can be selected at runtime without recompilation with ./program OMP_NUM_THREADS=N. Due
to the overhead from thread creation, the sampling is faster only if the likelihood is su�iciently slow to compute.
As a rule of thumb, if the unparallelized sampling takes minutes or even hours, the parallelized version should
get close to the maximum speedup given by the number of cores. For very simple likelihoods (say one millisec-
ond per evaluation), the overhead from synchronizing threads usually slows down the entire process. We invite
the user to experiment which number of threads gives the best performance.

If BAT is compiled with support for threads and the number of threads is not set explicitly, it is implementation
dependent whether only one thread is created or as many as there are available cores. To enforce serial execution,
simply set OMP_NUM_THREADS=1.

For guidance, tests showed that it is beneficial to have as many threads as your computer provides. Working on
a quad core machine with hyper-threading, we observed a speedup factor of 3.5 – 3.9 with 8 and 16 chains on 8
cores for a likelihood that takes more than a second to evaluate.

Warning

The results of the sampling become nonsense if multiple threads are used but the likelihood itself is not
thread safe.

A simple example of a non-thread-safe likelihood is

double MyModel::LogLikelihood(const std::vector<double>& parameters)
{

// assign member variable
this->member = parameters[0];

// value of member used in MyModel::Method
return this->Method();

}

double MyModel::Method()
{

return -member * member;
}

If the method MyModel::Method is called simultaneously from di�erent threads with di�erent parame-
ters, its return value depends on the arbitrary call order of individual threads. There is a race condition on
member because it is read and wri�en simultaneously by multiple threads so the result of LogLikelihood
is not deterministic. There are several solutions.
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Avoid state

In this contrived example, it is easiest to avoid using any member variable or method call and do everything
inside LogLikelihood

double MyModel::LogLikelihood(const std::vector<double>& parameters)
{

return -parameter[0] * parameter[0];
}

Independent copies of state

In practice, it may be impractical or even inevitable to maintain state and call into other functions that require
state. A clean solution is to move Method into OtherClass, and to keep an independent copy of Other←↩
Class for each thread or each chain. For this purpose, we provide the hook BCEngineMCMC::MCMC←↩
UserInitialize that is called before any chain a�empts to evaluate the likelihood. For example:

class SomeState
{
public:

double Method() { ... }
private:

double t;
}

class MyModel
{
public:

...
virtual void MCMCUserInitialize()
{

state.resize(GetNChains());
}

virtual double LogLikelihood(const std::vector<double>& parameters)
{

SomeState& s = state.at(GetCurrentChain());
s.t = parameters[0];
return s.Method();

}

private:
std::vector<SomeState> state;

};

Note

In BAT, only the Markov chain sampling uses multiple threads. During optimization or any algorithm,
only one thread is active. In the above example, BCEngineMCMC::GetCurrentChain returns 0 in such
a context.
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