API
Modules
Types and constants
BinnedModels.BinEdgesBinnedModels.BinnedModelBinnedModels.BinningBinnedModels.BinningAlgorithmBinnedModels.FixedNBinsBinnedModels.FreedmanDiaconisBinningBinnedModels.RiceBinningBinnedModels.ScottBinningBinnedModels.SquareRootBinningBinnedModels.SturgesBinning
Functions and macros
BinnedModels.bin_centersBinnedModels.bin_intervalsBinnedModels.bin_leftedgesBinnedModels.bin_rightedgesBinnedModels.bin_widthsBinnedModels.binned_likelihoodBinnedModels.binned_modelBinnedModels.fit_binedges
Documentation
BinnedModels.BinnedModels — ModuleBinnedModelsA Julia package for statistical modeling of binned data, e.g. histograms.
BinnedModels.BinEdges — TypeBinEdges{T<:Number} = AbstractVector{T}Representation of a binning with n bins as n+1 edge points.
BinnedModels.BinnedModel — Typestruct BinnedModels.BinnedModelRespresents a statistical model for binned data.
User code should not instantiate BinnedModel directly, but use binned_model instead.
BinnedModels.Binning — TypeBinning{T<:Number} = AbstractVector{<:AbstractInterval{T}}Representation of a binning as a vector of intervals.
BinnedModels.BinningAlgorithm — Typeabstract type BinningAlgorithmAbstract type for for algorithms that determine a suitable binning for a given set of data.
BinnedModels.FixedNBins — TypeFixedNBins(nbins::Int)Selects a fixed number of bins.
Constructor: FixedNBins(; fields...)
Fields:
nbins::Int64
BinnedModels.FreedmanDiaconisBinning — Typestruct FreedmanDiaconisBinning <: BinningAlgorithmSelects automatic binning based on the Freedman–Diaconis rule.
Constructor: FreedmanDiaconisBinning()
BinnedModels.RiceBinning — Typestruct RiceBinning <: BinningAlgorithmSelects automatic binning based on the Rice rule.
Constructor: RiceBinning()
BinnedModels.ScottBinning — Typestruct ScottBinning <: BinningAlgorithmSelects automatic binning based on Scott's normal reference rule.
Constructor: ScottBinning()
BinnedModels.SquareRootBinning — Typestruct SquareRootBinning <: BinningAlgorithmSelects automatic binning based on the Square-root choice.
Constructor: SquareRootBinning()
BinnedModels.SturgesBinning — Typestruct SturgesBinning <: BinningAlgorithmSelects automatic binning based on Sturges' formula.
Constructor: SturgesBinning()
BinnedModels.bin_centers — Functionbin_centers(binnig::Binning)
bin_centers(edges::BinEdges)Returns the bin centers of a binning defined by a vector of edges.
BinnedModels.bin_intervals — Functionfunction bin_intervals(edges::BinEdges, closed::Val = Val(:closedleft))::BinningReturns a vector of n bin intervals, derived from a vector of n+1 bin edges.
BinnedModels.bin_leftedges — Functionbin_leftedges(edges::BinEdges)
bin_leftedges(binnig::Binning)Returns the left edges of a binning defined by a vector of edges.
BinnedModels.bin_rightedges — Functionbin_rightedges(edges::BinEdges)
bin_rightedges(binnig::Binning)Returns the right edges of a binning defined by a vector of edges.
BinnedModels.bin_widths — Functionbin_widths(binnig::Binning)
bin_widths(binning::BinEdges)Returns the bin widths of a binning defined by a vector of edges.
BinnedModels.binned_likelihood — Functionbinned_likelihood(f_expectation, edges::Tuple{AbstractVector,...}, data::AbstractVector{<:Integer})
binned_likelihood(f_expectation, h::StatsBase.Histogram{<:Integer})Constructs a binned likelihood object that is compatible with the DensityInterface API.
See also binned_model.
BinnedModels.binned_model — Functionbinned_model(f_expectation, edges::Tuple{AbstractVector,...})Create a staticstical binned model from an density expectation function f_expectation and a tuple of bin edges edges.
See also binned_likelihood.
BinnedModels.fit_binedges — Functionfit_binedges(data::AbstractVector{<:Real})::BinEdges
fit_binedges(data::NTuple{N,AbstractVector{<:Real}})::NTuple{N,BinEdges}Return suitable bin edges for data, using algorithm.
data may be a real-valued vector, or a tuple of real-valued vectors for multi-dimensional data.